❇️ نام مقاله:
A Tutorial on Federated Learning from Theory to Practice: Foundations, Software Frameworks, Exemplary Use Cases, and Selected Trends
✍️ نویسندگان:
M. Victoria Luzón, Nuria Rodríguez-Barroso, Alberto Argente-Garrido , Daniel Jiménez-López, Jose M. Moyano, Javier Del Ser, Weiping Ding, Francisco Herrera
🗓 سال انتشار: ۲۰۲۴
📔 ژورنال:
IEEE/CAA Journal of Automatica Sinica
🔸مقاله با این مقدمه آغاز شده که هنگامی که حفظ حریم خصوصی دادهها به عنوان یک ضرورت در نظر گرفته میشود، یادگیری مشارکتی (فدرال FL) به عنوان یک زمینه هوش مصنوعی مرتبط برای توسعه مدلهای یادگیری ماشین در یک محیط توزیع شده و غیرمتمرکز ظاهر میشود.
🔸 یادگیری مشارکتی اجازه میدهد تا مدلهای ML بر روی دستگاههای محلی بدون نیاز به انتقال داده متمرکز آموزش داده شوند، در نتیجه به دلیل توانایی ذاتی خود در بهبود مسائل مربوط به حفظ حریم خصوصی و کارایی یادگیری توزیع شده، توجه پژوهشگران زیادی را به خود جلب کرده است . بعلاوه این رویکرد بسیار مقیاس پذیر بوده چراکه میتواند شرکت کنندگان متعددی را که هر کدام منابع داده خود را دارند، پوشش دهد. این مساله میتواند به ویژه در سناریوهایی با تولید مداوم داده مفید باشد، به عنوان مثال، در دستگاههای حسگر اینترنت اشیا. در نتیجه، FL به یک زمینه مهم هوش مصنوعی تبدیل شده است و علاقه محققان، توسعه دهندگان و دانشمندان داده را در مطالعات نظری و عملی و بخصوص برنامه هایی که با دادههای حساس سروکار دارند، به خود جلب کرده است.
🔸اولین برنامه موفق FL توسط Google برای پیشبینی ورودی متن کاربر توسعه داده شد بطوریکه دادهها به صورت محلی در دهها هزار دستگاه Android، نگهداری میشد. از آن زمان، FL برای طیف گستردهای از کاربردها در زمینههای مختلف، از مهندسی صنایع گرفته تا مراقبت های بهداشتی به کار گرفته شده است.
🔸مقاله پس از ذکر مقدمات ، در بخش 2 به چرایی و چگونگی FL پرداخته و تاکید میکند که یادگیری ماشین یکی از زمینههای پرکاربرد هوش مصنوعی است که به دلیل افزایش تقاضا از نظر حجم و تنوع دادهها منجر به چالشهای متعددی در رابطه با حریم خصوصی دادهها و پردازش چنین حجم زیادی از دادهها شده است. در حقیقت چالشهایی نظیر حفظ حریم خصوصی، ارتباطات و دسترسی به دادهها منجر به شکل گیری رویکرد یادگیری مشارکتی (فدرال) یا FL شده است.
🔸در بخش 3، مقاله ضمن بررسی زیرساخت یادگیری مشارکتی و عناصر کلیدی آن، 2 معماری اصلی در این حوزه و وجه تمایز آنها را شرح داده و قسمت بعد به توضیح امنیت داده در این رویکرد میپردازد.
🔸 در بخش چهارم، مقاله به معرفی مجموعه دادهها و چارچوبهای نرم افزاری پیشرفته در این حوزه پرداخته و پرکاربردترین مجموعه دادهها در ادبیات موضوع را برای انجام آزمایشات FL ارائه کرده و سپس طیف وسیعی از چارچوبهای نرمافزاری پیشرفته برای طراحی چنین مطالعاتی را از زوایای مختلف مورد تجزیه و تحلیل قرار داده است .
🔸 در بخش پنجم مقاله، دستورالعملهای روش شناختی برای شبیهسازی سناریوهای FL ارائه شده است.
🔸بخش ششم مقاله به پاسخ به این پرسش میپردازد که اساسا” زمانی که دادهها بین چندین کلاینت توزیع میشود، آیا FL نسبت به رویکرد دیگر (غیر FL) مزیتی دارد یا خیر و به ارائه یک مقایسه عملکرد بین استراتژیهای FL و غیرFL میپردازد.
🔸 در بخش هفتم مقاله به ارائه شش مورد مطالعاتی در زمینه بکارگیری FL میپردازد و پیادهسازی راه حل را با استفاده از 3 فریمورک مختلف (TFF, Flower و FATE) نشان میدهد.
🔸 در نهایت در بخش هشتم روندهای مطالعاتی در حوزه FL ارائه شده که میتواند چشم اندازهای تحقیقاتی مناسبی را برای پژوهشگران معرفی نماید.
🔸 این مقاله سعی کرده تا با نگاه جامعی که به مفهوم و کاربردهای FL دارد، بتواند به عنوان مرجعی برای پژوهشگران این حوزه مطرح شود.