

A Tutorial on Federated Learning from Theory to
Practice: Foundations, Software Frameworks,
Exemplary Use Cases, and Selected Trends

M. Victoria Luzón , Nuria Rodríguez-Barroso , Alberto Argente-Garrido , Daniel Jiménez-López ,
Jose M. Moyano , Javier Del Ser , Senior Member, IEEE, Weiping Ding ,

Senior Member, IEEE, and Francisco Herrera , Senior Member, IEEE

 Abstract—When data privacy is imposed as a necessity, Feder-
ated learning (FL) emerges as a relevant artificial intelligence field
for developing machine learning (ML) models in a distributed
and decentralized environment. FL allows ML models to be
trained on local devices without any need for centralized data
transfer, thereby reducing both the exposure of sensitive data and
the possibility of data interception by malicious third parties. This
paradigm has gained momentum in the last few years, spurred by
the plethora of real-world applications that have leveraged its
ability to improve the efficiency of distributed learning and to
accommodate numerous participants with their data sources. By
virtue of FL, models can be learned from all such distributed data
sources while preserving data privacy. The aim of this paper is to
provide a practical tutorial on FL, including a short methodology
and a systematic analysis of existing software frameworks. Fur-
thermore, our tutorial provides exemplary cases of study from

three complementary perspectives: i) Foundations of FL, describ-
ing the main components of FL, from key elements to FL cate-
gories; ii) Implementation guidelines and exemplary cases of
study, by systematically examining the functionalities provided by
existing software frameworks for FL deployment, devising a
methodology to design a FL scenario, and providing exemplary
cases of study with source code for different ML approaches; and
iii) Trends, shortly reviewing a non-exhaustive list of research
directions that are under active investigation in the current FL
landscape. The ultimate purpose of this work is to establish itself
as a referential work for researchers, developers, and data scien-
tists willing to explore the capabilities of FL in practical applica-
tions.
 Index Terms—Data privacy, distributed machine learning, feder-
ated learning, software frameworks.

I. Introduction

D EEP learning has revolutionized the field of artificial
intelligence (AI) by enabling machines to learn and make

decisions like humans through data-driven techniques [1]. The
development of high-speed networks such as 5G and advances
in edge computing have supported the development of hard-
ware and models capable of processing large amounts of data
collected from multiple devices. Consequently, privacy aware-
ness has become a major design driver, shifting the focus from
centralized machine learning (ML) to distributed ML. Still, in
distributed ML the communication costs far outweigh the
compute costs, making the training process inefficient [2]. FL
[3], [4] was conceived to address these issues. In essence, FL
is a distributed learning paradigm that enables model learning
from decentralized data, without the need for collecting data
on a central server. Since local data never leaves the device
where it was collected, data privacy is guaranteed.

FL has gained significant attention due to its ability to
address privacy concerns and improve the efficiency of dis-
tributed learning [5]–[7]. Additionally, it is highly scalable as
it can accommodate numerous participants, each with their
data sources. This can be particularly useful in scenarios with
continuous data generation, e.g., Internet of Things (IoT) sen-
sor devices. As a result, FL has become an important AI field,
attracting the interest of researchers, developers, and data sci-
entists in the ML community in theoretical and practical stud-
ies involving applications that deal with sensitive data. The
first successful application of FL was developed by Google to
predict user’s text input within tens of thousands of Android

Manuscript received September 8, 2023; revised October 4, 2023 and

November 20, 2023; accepted December 21, 2023. This work was partially
supported by the R&D&I, Spain grants PID2020-119478GB-I00 and,
PID2020-115832GB-I00 funded by MCIN/AEI/10.13039/501100011033. N.
Rodríguez-Barroso was supported by the grant FPU18/04475 funded by
MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future”,
Spain. J. Moyano was supported by a postdoctoral Juan de la Cierva
Formación grant FJC2020-043823-I funded by MCIN/AEI/10.13039/5011000
11033 and by European Union NextGenerationEU/PRTR. J. Del Ser acknow-
ledges funding support from the Spanish Centro para el Desarrollo
Tecnológico Industrial (CDTI) through the AI4ES project, as well as from the
Department of Education of the Basque Government (consolidated research
group MATHMODE, IT1456-22). Recommended by Associate Editor
Zhengcai Cao. (Corresponding author: Nuria Rodríguez-Barroso.)

Citation: M. V. Luzón, N. Rodríguez-Barroso, A. Argente-Garrido, D.
Jiménez-López, J. M. Moyano, J. Del Ser, W. Ding, and F. Herrera, “A
tutorial on federated learning from theory to practice: Foundations, software
frameworks, exemplary use cases, and selected trends,” IEEE/CAA J. Autom.
Sinica, vol. 11, no. 4, pp. 824–850, Apr. 2024.

M. Luzón is with the Department of Software Engineering, Andalusian
Research Institute in Data Science and Computational Intelligence (DaSCI),
University of Granada, Granada 18071, Spain (e-mail: luzon@ugr.es).

N. Rodríguez-Barroso, A. Argente-Garrido, D. Jiménez-López, J. Moyano,
and F. Herrera are with the Department of Computer Science and Artificial
Intelligence, Andalusian Research Institute in Data Science and Compu-
tational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
(e-mail: rbnuria@ugr.es; aargente@ugr.es; dajilo@ugr.es; jmoyano@ugr.es;
herrera@ugr.es).

J. Del Ser is with the Department of Communications Engineering,
University of the Basque Country (UPV/EHU), and also with TECNALIA,
Basque Research & Technology Alliance (BRTA), Spain (e-mail: jdelser@
tecnalia.com).

W. Ding is with the School of Information Science and Technology,
Nantong University, Nantong 226019, China (e-mail: ding.wp@ntu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2024.124215

824 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

devices, while keeping data locally on devices [3]. Since then,
FL has been applied to a wide range of applications in diverse
fields, from industrial engineering to healthcare [8]. It has
been also explored for drug discovery from biological and
chemical data in real-world cross-national settings [9].

In this context, we can find many overviews and general
studies on FL, mostly from a scientific perspective. However,
the literature lacks a tutorial on FL that considers essential
aspects for the understanding, analysis and use of this research
area with a complete view from theory to practice. We pro-
vide the following elements: a revision of the key elements,
architectures, and categories defined in FL; a design method-
ology; a systematic analysis of software frameworks from a
practical perspective, along with cases of study; and research
trends for a double perspective of FL components versus ML
approaches. This is indeed the goal of this tutorial paper: to
provide a valuable source of information for anyone inter-
ested in learning about this cutting-edge research area and in
applying it to real-world problems. Specifically, the contribu-
tions of this tutorial articulate around three different axis or
perspectives:

1) We present a clear insight into the FL field, discussing
the foundations, ranging from the description of its main com-
ponents, from key components to architectures and categories.

2) We provide a practical perspective, including a short
methodology, the software frameworks analysis and exem-
plary cases of study. First, we provide a methodology to
design a FL scenario and experiments. Second, we provide an
analysis of the functionalities provided by software frame-
works for FL deployment, and show the maturity of the field,
thorough the simplicity and immediacy of assembling a FL
architecture with these frameworks. Third, we provide exem-
plary cases of study with source code for different ML
approaches, such as image classification and sentiment analy-
sis (SA) focused on the data, decision trees in vertical FL from
a model analysis focused on interpretability, clustering as non-
supervised learning, and differential privacy (DP) as an
approach to preserve data integrity and privacy. This collec-
tion of cases of study aims to give a broad practical view of
the possibilities of FL, including the availability of the code
used for them.

3) We analyze the state of the art and prospects of the field,
providing a non-exhaustive review of trends under a double
prism: i) Trends that are inherent to FL; and ii) Trends in fed-
erated ML. The selected trends include attacks and defenses in
FL, personalized FL, federated transfer learning, and ML
tasks such as semi-supervised FL, anomaly detection, natural
language processing (NLP) or SA.

According to these aims, the paper is organized as follows.
Section II introduces the concept of FL considering 3 funda-
mental questions: Why? What? and What for? Section III
explores the foundations, introducing the principal compo-
nents needed to fully understand the foundations of FL, from
key elements to architectures and categories, with a short view
of techniques to ensure the data privacy. Section IV examines
an ecosystem available in federated scenarios, focusing on
federated datasets and a wide range of software frameworks.
Section V describes the methodology for designing a FL sce-

nario, depicting a method to put into practice the theoretical
concepts introduced previously. Section VI provides a com-
parison between FL and non-FL scenarios. Section VII dis-
cusses different use cases and methods to solve them by using
three different software frameworks selected from the study
conducted in the previous section. Section VIII elaborates on
the selected FL trends. Section IX concludes this tutorial with
a summary and outlook. Finally, we include Appendix which
shows a list of abbreviations and notations.

II. Federated Learning: Why, What and What for?

Data-driven ML has mastered the AI field [10]. Unfortu-
nately, increasing demands in terms of data volume and vari-
ety have resulted in several challenges related to data privacy
and the processing of such large amounts of data. Among
them, the main ML challenges from which FL emerges are
associated with privacy, communication, and data access,
which are next discussed shortly:

● Data Privacy: In centralized ML, users’ data is often col-
lected and stored in a central server, where it can be vulnera-
ble to privacy breaches [11]. This is particularly concerning in
some fields such as healthcare [12], finance, and other indus-
tries where data privacy is of utmost priority. Moreover,
growing concerns about safeguarding of data-privacy mani-
fests in the legal area with, for example, recently published
recommendations [13]. Consequently, the development of pri-
vacy-preserving AI methods is in urgent demand in such
fields.

● Communication Costs and Latency [14]: In centralized
ML, the raw data is often transmitted to a central server to be
processed and used to train ML models [15]. This informa-
tion exchange can be costly and time-consuming, especially
when dealing with large datasets [16]. Furthermore, the
increasing amount of data available due to the explosion of
IoT sensors [17] and the proliferation of edge devices generat-
ing vast amounts of data poses a new challenge related to the
storage and preprocessing of data continuously flowing from
different sources.

● Limitations in Data Access [12]: In some cases, data can
be distributed across different institutions or organizations,
making it difficult to access or share data between them or
with others.

{C1,
C2, . . . ,Cn}

In order to address the above challenges, FL [4] emerges as
a distributed ML paradigm aimed at developing a ML model
without explicitly sharing any data between any of the partici-
pants. It involves a network of clients or data owners

, which takes part in two primary phases:
1) Model training phase, in which each data owner

exchanges information without revealing any of their data to
collaboratively train a ML model. For that purpose, each data
owner trains a local learning model on its data and shares this
learning model’s information instead of their training data.
Then, the trained local models are aggregated to create a
trained global learning model (see Fig. 1).

2) Inference phase, where the trained global model is
applied to new data instances.

These processes can be either synchronous or asynchronous,
depending on the data availability of nodes and the trained

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 825

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

model. It is important to note that privacy is not the only rea-
son for this approach, as there should also be a fair value-dis-
tribution mechanism in place to share the profits gained by the
collaboratively trained model.

{C1, . . . ,Cn}
{D1, . . . ,Dn} Ci

Li {L1, . . . ,
Ln} G

t
Dt

i
Lt

i L̂t
i Gt

{L̂t
1, . . . , L̂

t
n}

∆

Once we have described FL as a general concept, a FL sce-
nario can be formally posed as follows. We assume a set of
clients or data owners with their respective local
training data . Each of these clients owns a
local learning model expressed as the parameters

. FL aims to learn a global learning model , using scat-
tered data across clients through an iterative learning process
known as round of learning. For that purpose, in each learn-
ing round , each client trains its local model over their local
training data , resulting in the update of the local parame-
ters to . Thereafter, the global parameters are com-
puted by aggregating the trained local parameters
using a fixed federated aggregation operator , and the local
learning models are updated with the aggregated parameters

Gt = ∆(L̂t
1, L̂

t
2, . . . , L̂

t
n)

Lt+1
i ←Gt, ∀i ∈ {1, . . . ,n}. (1)

Updates among the clients and the server are repeated for
the learning process until a given stop criteria is met. Thus,
the final value of G will sum up the knowledge modelled in
the clients.

Finally, we pause at the question What for? The design of
this distributed learning paradigm allows for training models
on data that is not easily collectable or centralized, providing a
solution to the problems addressed before because of the fol-
lowing features:

● Data Privacy: FL addresses this leakage by allowing the
model to be trained on the data where it is allocated, without
sharing any information about data to a central server. This
way, sensitive data remains on users’ devices and is never
shared, thus preserving users’ privacy.

● Communication Costs and Latency: FL addresses this
challenge by allowing only model updates to be exchanged

between the server and the clients. This approach addresses
the latency and high bandwidth issues present in other dis-
tributed training processes, where the training algorithm is
modified to support distributed computations and the data is
downloaded from a central data provider or data silo [18].
Consequently, FL is more efficient and scales better than tra-
ditional distributed ML strategies.

● Data Access: FL solves this challenge by enabling collab-
orative ML across different institutions or organizations, with-
out requiring them to share any data [19]. FL effectively over-
comes the requirement of a central data provider and enables
applications of ML in various domains that are sensitive to
data privacy, promoting collaboration and innovation in the
field.

FL is driven by the challenges of privacy, communication
costs, and data access limitations that are inherent in central-
ized ML. It offers a promising approach for training ML mod-
els on decentralized data, while addressing these challenges
and enabling new applications of ML in various domains [8].
The healthcare domain has greatly leveraged the use of FL
thorough the development of the so-called Internet of Health-
care Things (IoHT), which allows knowledge from different
sources to be combined in order to better determine patient
health status and identify possible anticipatory actions [20],
[21]. An interesting use case of FL within the IoHT context is
medical imaging for COVID-19 detection [22]. Moreover, the
industrial engineering domain has found multiple successful
applications of FL such as detecting defects in production
tasks [23] or malicious attacks detection in communication
systems supported by unmanned aerial vehicles [24].

It is worth emphasizing that FL can be utilized in several
ways, for instance, it can depend on the roles or the nature of
the data of each of the nodes involved. All these aspects are
covered in Section III.

III. Federated Learning Foundations: Key Elements,
Architectures, Categories and Data Privacy

In this section, we explore the principal components needed
to fully understand the FL foundations. In the following, we
introduce the principal workflow and key elements of FL in
Section III-A (discussing the local training, communication,
model aggregation and local models update), to continue with
multiple FL architectures (client-server and peer-to-peer) in
Section III-B. Then, we introduce the main FL categories
according to different criteria in Section III-C (based on data
features, labels and sample space). Finally, we briefly discuss
the most used techniques to ensure the data privacy in Section
III-D.

A. Workflow and Key Elements in Federated Learning
Once FL has been briefly introduced, we can move on to

talk about the main workflow of a FL process. In Fig. 2 we
show the different steps that compose FL training. In the fol-
lowing, we further explain the steps of the workflow and spec-
ify the key elements [25] which arise from each of the steps.

a) Local Training: It starts with the local training of each of
the local ML models by each of the data owner nodes. Gener-
ally, all these locally trained learning models have a shared

Aggregation

Hospital A

Hospital B

Hospital C
ℓ̂

ℓ̂

ℓ̂

Fig. 1. Generic FL medical use case, where Magnetic Resonance Image
data is collected at three different hospitals and modelled locally for a clinical
diagnostic application. Model updates are uploaded to a central server (→, →,
→) and aggregated to yield a trained global model, which is then delivered
downstream (--→) to the hospitals and combined with their local models. As
a result, the combined local model leverages knowledge modelled by other
hospital for the same clinical task, while keeping local data private.

 826 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

architecture. However, all the aspects concerning training
hyperparameters (such as number of epochs, batch size, learn-
ing rate) may differ among clients. In this step, the first key
elements appear naturally:

● Decentralized Data: Data is distributed among different
devices or nodes, instead of being in a centralized location,
which is beneficial when the data privacy and security are a
concern. Moreover, such data is inaccessible and not shared
with any third-party. The data distribution across the clients
can be:

1) Homogeneous or independent and identically distributed
(IID): It assumes that the data distribution across the clients is
IID, which means that the data of each client follows the same
underlying data distribution.

2) Heterogeneous or non independent and identically dis-
tributed (non-IID): It assumes that the data distribution across
the clients is non-IID, that is, the data of each client follows a
different data distribution. Formally, we can distinguish
between three types of data distribution heterogeneity [26]: i)
Where the feature space of the clients’ data are different, but
they share the same goal; ii) Where the input space is analo-
gous, but there are differences in the label space according to
the data; and iii) When there are differences in both the fea-
ture and label spaces.

● Learning Model: The training of the learning model is
performed on the decentralized data, where each device or
node trains its model and contributes to the training process,
sharing the weights of its local learning model. It also
improves the model due to a better generalization, given that
the model can learn from a broader range of data.

● Clients: These nodes store data and train models, and are
usually referred to as clients (see Section III-B).

b) Communication: After local training, the communication
enables the coordination and aggregation of model updates
generated by the participating nodes, allowing the decentral-
ized training. It plays a crucial role in the protection of the pri-
vacy and security of the data when paired with data security
techniques like (DP) or (SMC). We highlight the following
key elements from this step:

● Communication Schedule: The communication can be
both synchronous and asynchronous, depending on the config-
uration. There may also be a central server that handles the
collection of all local models, or it may be distributed across
multiple nodes in the network.

● Privacy Protocols: Although no training data is shared
during FL communications, the information shared is suscep-
tible to privacy leaks or corrupting the entire learning process
[27]. Hence, communications are one of the weak points of FL
regarding susceptibility to attacks. For this reason, it is usu-
ally combined with other privacy mechanisms (see Section
III-D).

c) Aggregation: The local model updates generated by each
node are combined by means of a specific aggregation opera-
tor and the result is incorporated to update and create a trained
global learning model. The key element in this step is the
aggregation mechanism, which depends on the task address-
ed. However, the most common one is Federated Averaging
(FedAvg) [14] when the ML model can be expressed as a vec-
tor of weights. Otherwise, as in clustering, for example, a spe-
cific aggregator must be designed to combine the information
from each node.

d) Local Update: The last step consists of updating the local
models stored in the different nodes with the new global
model. The simplest case is to update all local models with
this new global model. However, there are different update
strategies that consist of combining the local and global mod-
els rather than replacing them directly. These approaches are
used to achieve features such as personalization of the clients
to their local data.

B. Federated Learning Architectures
The combination of the key elements generates multiple FL

architectures, that defines their interrelationship [4], both
client-server and peer-to-peer:

● Client-server architecture. There is a manager node
responsible for the coordination and aggregation of model
updates named the server and the rest of nodes which own
data and are responsible for training their local models named
the clients. This is easy to implement, but it requires a high
level of trust in the server. This degree of reliance is its main
weakness, as a result it is vulnerable to attacks. We represent
this architecture in Fig. 3.

Model update Model update

Server
Communication

(Model A)
Model
update

Communication
(Model B)

Communication
(Model C)

Client A Client B Client C

Fig. 3. Representation of client-server FL architecture with 3 clients.

● Peer-to-peer architecture. All the nodes own both the
training data and aggregate model updates of other nodes. It
doesn’t require any fixed coordinator of the learning process.
This is complex to implement, and the communication costs
increase, but the main advantages are an elevated level of

Local update
Model update strategy
Personalization
Versioning

Aggregation
delivery

Encryption protocol
Communication schedule

Local training
Client device
Learning model
Decentralized data

Communication
Encryption protocol
Communication schedule

Global model
Aggregator architecture
Aggregation
policy/strategy
Versioning

01

02

03

04

05
FEDERATED
LEARNING

WORKFLOW

Fig. 2. Block diagram of the FL workflow.

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 827

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

security and data privacy. We represent this architecture in
Fig. 4.

Node A Node B
Model

update A
Local

training Local
training

Model
update B

Aggregation strategy A Aggregation strategy B

Fig. 4. Representation of peer-to-peer FL architecture.

To the best of our knowledge, the client-server architecture
is the most common in FL; consequently we will refer to it as
the default architecture when FL is being discussed.

C. Federated Learning Categories
There are several categories of FL according to properties of

the key elements. We consider the following properties of the
decentralized data key element to be the ones that generate the
most relevant FL categories:

Data Feature, Label and Sample Space: The decentralized
nature of FL may induce bias and heterogeneity in the local
data distribution due to different circumstances and factors,
such as cultural, ethnic or age differences between the users
generating such data. Based on the dimension in which the
data is partitioned across clients, there are different categories
[4]. We define the following categories in terms of the feature
space (X), the label space (Y) and the sample space (I) as fol-
lows:

● Horizontal Federated Learning (HFL): When data is par-
titioned across clients based on the samples, which means that
each client owns different samples of the overall training
dataset. Formally, we can define it as

Xi = X j, Yi = Y j, Ii , I j, ∀Di,D j, i , j (2)
(i, j)

(Xi,Yi) (X j,Y j)
Ii I j Di D j

where the feature and label space of the clients is
depicted by and and it is assumed to be the
same, while the samples and are not the same. and
depict the data of the clients i and j. It is suitable for training
models on data collected from numerous similar devices, such
as smartphones or IoT devices.

● Vertical Federated Learning (VFL): When data is parti-
tioned across clients based on the features, which means that
each client owns the same set of samples, but a different set of
features. Formally, we can define it as

Xi , X j, Yi , Y j, Ii = I j, ∀Di,D j, i , j. (3)
It is suitable for training models on data collected for a

small number of devices with different feature space. For
example, it can be used to predict medical outcomes based on
data collected from multiple hospitals, where each hospital
has a different set of medical records.

● Federated Transfer Learning (FTL): When knowledge is
transferred across multiple domains without any overlap
between samples or features [28]. Formally, we can define it
as

Xi , X j, Yi , Y j, Ii , I j, ∀Di,D j, i , j. (4)
In this architecture, it is not assumed that the distribution of

training and test data are the same and they are defined in the
same feature space. It is usually used in combination with
fine-tuning techniques over large models pretrained using a
centralized dataset.

Fig. 5 represents the differences between HFL, VFL and
FTL according to the data and its features shared between dif-
ferent clients.

Horizontal
federated learning

La
be

ls

La
be

ls

Data client A

Data client B

Features

Sa
m

pl
es

(a) Horizontal federated learning (HFL)

Vertical
federated
learning

La
be

ls

Data client A

Data client B

Features

Sa
m

pl
es

(b) Vertical federated learning (VFL)

La
be

ls

Data client A

Data client B

Features

Sa
m

pl
es

Federated
transfer learning

(c) Federated transfer learning (FTL)

Fig. 5. Representation of HFL, VFL and FTL categories in a client-server
FL [4].

D. Data Privacy: Advanced Approaches
FL is built with privacy in mind, that is, clients’ data

remains private across the FL model training. However, it is
possible to break such privacy guarantees through the
exchanged models during the learning process, as local client
models are prone to memorization of their training dataset. A
malicious node can try to recover some part of the private
training dataset from other clients, inducing a privacy leakage.
Therefore, data privacy techniques are required to enhance the
privacy guarantees of a FL model. We consider that these
techniques can be deployed in multiple elements of the FL

 828 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

architecture, which we will elaborate on in the following short
sections, considering SMC & homomorphic encryption (HE)
and DP.

1) Secure Multiparty Computation & Homomorphic Encry-
ption: SMC is aimed at securing the communications in the
FL rounds, mainly focusing on the aggregation procedure.
Communication channels are kept safe through HE [29]. SMC
often employs HE as a tool to ensure that there are no agents
manipulating the communication protocols to either com-
pletely deny the communication process or intercept the mod-
els exchanged. SMC mostly focuses on computing the aggre-
gation so that sensitive data such as parameters are kept hid-
den to FL nodes that manipulate them [30]. While these tech-
niques avoid external or internal inference in the FL rounds,
the resulting FL model is still vulnerable to attacks that extract
information from the aggregated model itself [27]. This moti-
vates the usage of data privacy techniques that modify the
learning process to ensure the aggregated FL model is pro-
tected as well as the individual clients’ models are.

2) Differential Privacy: DP is a data privacy enhancing
technique aimed at ensuring the indistinguishability of the
data used, that is, it hides the presence of individuals. This is
achieved through the addition of calibrated random noise [31].
When applied to FL, DP can be deployed at two stages with
diverse privacy guarantees: a) locally training the FL model
with DP at the client, known as local differential privacy
(LDP) [32], and b) at the aggregation step creating a differen-
tially private version of FedAvg, known as central differential
privacy (CDP). LDP provides indistinguishability for clients’
data, providing the strongest privacy guarantee at the cost of
reduced performance, and CDP ensures indistinguishability in
determining whether a client participates in the aggregation
step or not, providing a weaker privacy guarantee that
improves the performance of the FL model when compared to
LDP [33]. There are also some SMC and HE frameworks that
integrate DP in their procedures [34].

Overall, data privacy needs to be enhanced in FL tasks.

Nevertheless, enhanced data privacy often comes at the cost of
worse FL model performance, a trade-off that should be
adjusted to each FL scenario.

IV. Federated Datasets and State-of-the-Art
Software Frameworks

This section introduces the ecosystem available to design
models and studies in federated scenarios. First, the most
widely used datasets in the literature to perform FL experi-
ments are presented (see Section IV-A); later, a wide range of
state-of-the-art software frameworks for designing such stud-
ies, are analyzed from different multiple angles (see Section
IV-B).

A. Federated Datasets
Datasets from traditional centralized ML tasks can be reused

for simulation purposes by artificially partitioning and shar-
ing the data between the different parties to fit the federated
scenario. Nevertheless, there are also some widely used
datasets that are considered inherently federated by their fea-
tures or data distribution. In this regard, it is noteworthy to
mention LEAF [35], a benchmarking framework that pro-
vides several federated datasets, and TensorFlow Federated
(TFF) [36] which also implements some federated datasets.

Table I shows a summary of the most common federated
datasets in the literature, including CelebA1, Cifar1002, Fash-
ion MNIST3, FEMNISTIV-A, Google landmark v2IV-A, iNatu-
ralistIV-A, MedMNIST4, MNIST5, ShakespeareIV-A, RedditIV-A,
Stack OverflowIV-A, Sentiment140IV-A, Adult6, and Credit27.

The datasets in the table cover different tasks such as com-
puter vision, NLP, and traditional tabular classification, as

TABLE I

Datasets for Benchmarking Federated Scenarios. The Fed. Dist. Column Indicates if the Distribution of the Dataset is
Inherently Federated. The Refs. Column Indicates Studies Where the Dataset Has Been Used

Dataset Task #Instances #Clients Fed. dist. Category Refs.

CelebA Image classification 200 288 9343 Yes HFL [37], [38], [39]

Cifar100 Image classification 60 000 − No HFL [40], [41], [42]

Fashion MNIST Image classification 70 000 − No HFL [43], [44], [45]

FEMNIST Image classification 805 263 3550 Yes HFL [40], [45], [46]

Google landmark v2 Image classification 164 172 1262 Yes HFL [47], [48], [49]

iNaturalist Image classification 155 941 9275 Yes HFL [47], [50], [51]

MedMNIST Image classification 708 069 − No HFL [52], [53], [54]

MNIST Image classification 70 000 − No HFL [43], [44], [46]

Shakespeare Text prediction 4 226 150 1129 Yes HFL [41], [50], [55]

Reddit Text prediction 56 587 343 1 660 820 Yes HFL [56], [57], [58]

Stack Overflow Text prediction 168 895 995 585 323 Yes HFL [41], [55], [59]

Sentiment140 SA 1 600 498 660 120 Yes HFL [40], [46], [50]

Adult Classification 48 842 − No VFL [60], [61], [62]

Credit2 Classification 30 000 − No VFL /FTL [63], [64], [65]

1 https://leaf.cmu.edu/

2 https://www.tensorflow.org/federated/apidocs/python/tff/simulation/datasets

3 https://www.kaggle.com/datasets/zalando-research/fashionmnist

4 https://medmnist.com/

5 http://yann.lecun.com/exdb/mnist/

6 https://archive.ics.uci.edu/ml/datasets/adult

7 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 829

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

well as different federated scenarios such as HFL, VFL, and
FTL. Note that for both VFL and FTL, the most widely used
datasets are artificially partitioned but not inherently feder-
ated. Besides, the table includes the total number of instances
in the dataset and the predefined number of clients in the fed-
erated scenario (in those cases where the dataset distribution is
inherently federated). These datasets have been used in a sub-
stantial number of studies (whose references are included in
the last column of the table).

B. State-of-the-Art Frameworks for Federated Learning
When developing experiments for a federated scenario,

there are multiple frameworks designed for doing it. We have
searched for state-of-the-art open-source frameworks avail-
able and selected some important aspects of FL to check
whether these frameworks fulfill each aspect or not. Table II
shows the reviewed frameworks and whether they fulfill those
important aspects in FL8. This table may help the users select
the framework to use for their experiments with FL. Due to
space limitations because of the large number of frameworks,
the names of the different frameworks have been shortened in
the table. The frameworks reviewed are: PySyft (PyS), Ten-
sorFlow Federated TFF, FATE (FAT), PaddleFL (Pad),
Flower (Flo), Xaynet (Xay), IBM FL (IBM), Substra (Sub),
OpenFL (OFL), FedML (FML), FedJax (FJx), Backdoors 101
(101), FedLab (FLb), SimFL (SFL), easyFL (EFL), TorchFL

(TFL), APPFL (AFL), NVFlare (NVF).
a) Degrees of Compliance of Each Framework: Three

degrees of compliance have been considered depending on
whether an aspect is supported by a framework or not. The
green dots indicate that this aspect is fully supported by the
framework. The orange ones indicate that the aspect is par-
tially covered in the framework, i.e., it covers some cases but
not all. Finally, the red dots mean that this aspect is not sup-
ported in the framework. Additionally, the grey dots indicate
that we were unable to determine exactly whether the frame-
work supports an aspect.

b) FL Aspects Covered by Each Framework: The table is
horizontally partitioned into four groups. First, the main
aspects of FL are checked, indicating whether or not the
frameworks support the execution of HFL, VFL, or FTL algo-
rithms, if they support common ML frameworks such as Ten-
sorFlow, PyTorch, or Scikit-Learn, if they support IID and
non-IID data sampling, and if they include a wide range of
federated aggregation mechanisms that have been proposed in
the literature. Finally, the fourth group checks other advanced
properties of the frameworks, such as the interpretability of
their models, if they support model personalization on the
client side, if they provide comprehensive documentation or a
high-level API, their ability to extend the framework with new
properties customized by the user, and if they are actively
maintained.

TABLE II

State-of-the-Art Software Frameworks for FL (: Full Support; : Partial Support; : No Support; −: Undetermined)

PyS TFF FAT Pad Flo Xay IBM Sub OFL FML FJx 101 FLb SFL EFL TFL AFL NVF

　Federated Learning:

　　Horizontal Federated Learning

　　Vertical Federated Learning

　　Federated Transfer Learning

　　Support other ML frameworks

　　Sampling IID or non-IID distribution −

　　Federated aggregation mechanisms −

　Adversarial Attacks in FL:

　　Privacy attacks

　　Defenses against Privacy attacks

　　Attacks to the federated model

　　Defenses against attacks to the model

　Differential Privacy (DP):

　　Mechanisms: Exponential, Laplacian...

　　Subsampling methods to increase privacy

　　Advanced (DP) Composition

　Advanced Properties:

　　Interpretability / Explainability

　　Personalization

　　Documentation and tutorials

　　High-level API −

　　Ability to extend the framework − − − −
　　Actively maintained

8 The information in the table is updated as of January 2023.

 830 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

V. Methodology for Designing A Simulated
Federated Learning Scenario

In previous sections, the foundations of FL and the charac-
teristics of existing datasets and frameworks have been
reviewed and analyzed. Provided that FL experimentation has
a major handicap in that there are no truly federated datasets,
i.e., datasets that are hosted on different devices, in this sec-
tion we provide methodological guidelines for simulating FL
scenarios. We stress that, what we do are simulations, in
which during experimentation we simulate clients that do not
access each other’s data. In some situations, this simulation
may be closer to reality in the sense that the data may have
been collected from different sources, thus distributing it by
identifying each of these sources with a client in the federated
schema.

Fig. 6 shows a workflow with the main steps to follow to
design a FL scenario and experiments. We pay attention to
various aspects: the problem to face and its data distribution,
the model selection, the training strategy, and evaluation
methodologies.

a) Federated Learning Scenario, Problem and Data Distri-
bution: The first step is to analyze the problem at hand, dis-
criminating mainly between HFL or VFL problems (see Sec-
tion III-C). Not all FL frameworks can deal with every kind of
scenario (see Table I). Therefore, the target scenario has a
major influence on the framework to be used. If we deal with

an HFL problem, frameworks such as TFF, Flower, or PySyft
can be used, while FATE or PaddleFL frameworks can be
adopted to tackle VFL scenarios. The software choice is
entirely at the user’s discretion, according to its experience
with similar frameworks, the specifications of the problem,
and other concerning factors. In the following sections, we
discuss and analyse some of them in more detail.

Regardless of the scenario, we should also check whether
the data is inherently federated or not. In general terms, those
datasets that can be naturally divided into pieces, each belong-
ing to different clients according to their features or data dis-
tribution, and can also be considered as inherently federated
datasets. For example, the FEMNIST dataset includes alphanu-
meric characters written by more than 3500 different users;
therefore, the data can be distributed so that each client retains
the characters written by a single user, as it would occur be in
a real-world scenario where characters are collected by a per-
sonal device. Likewise, in the Sentiment140 dataset each
tweet is annotated with the user who wrote it, thus each client
can be identified with a user, giving rise to an inherently fed-
erated dataset. Conversely, datasets such as Credit2 have no
natural or intrinsic division that makes their partitioning
among different clients relevant to be solved via FL. How-
ever, such partitions can be made for simulation purposes.

It should also be clarified that datasets that fully comply
with the FL framework (i.e., they are already distributed

Design
training strategy

Problem
type

HFL VFL

Federated data
distribution?

Federated data
distribution?

Model
selection and
deployment
over nodes

Simulate data
distribution

Are model
parameters

vectorizable?

Distribute
features over

nodes

Use specific
aggregation

strategy

YES

YES
(e.g., deep neural networks)

NO
(e.g., kNN, decision trees)

NONO

Start

Deploy & run

Non-IID

IID

Use generic
aggregation

strategy

Fig. 6. Workflow for designing a FL scenario. Read from top to bottom, it begins with the choice of the problem type, HFL or VFL, and continues choosing
the federated data distribution until the training strategy is designed, then the FL scenario is ready to be deployed and run.

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 831

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

among different parties so that the data is not visible outside
each of them) are not commonly found for simulation, since
the data needs to generally be hosted in a single site for use
and distribution. In any of the cases, if the data is inherently
federated, it can be directly distributed among clients,
enabling the next step of our methodology: model selection.

In the HFL scenario, if the data is not inherently federated,
we must split the data by samples. There are two coarse distri-
butions: IID and non-IID (see Section III-A). The former (IID)
distributes the data evenly among clients, which can be a fea-
sible scenario in a minority of real-world use cases. The latter
(non-IID), however, implies a distribution where each client
retains different quantities of data (quantity skew), having var-
ious distributions in their feature space (feature distribution
skew), having information about entirely different classes in
the output variables (label distribution skew) [66], [67], or
even a combination of them. In general, non-IID distributions
are frequently encountered in real-world problems. In any
case, the data distribution should be selected depending on the
simulation to be performed. It should be noted that to simu-
late an IID scenario, just a random partition of the dataset
must be performed. However, simulations of non-IID scenar-
ios are instead driven by the approach followed to allocate
certain data instances to each federated node, often made
according to a Dirichlet distribution, where the imbalance
level of each dataset is controlled by a parameter β [66]. In
any case, once data is partitioned, it is also distributed among
the clients, so that each of them receives different data sam-
ples that will be no longer available outside each client.

If facing a VFL problem where the data is not inherently
federated, the data is split by features. At this point we note
that, in the case of VFL, the non-IID nature of the data arises
from the non-overlapping feature distribution among the dif-
ferent clients and the number or types of features available at
each client [67]. Once partitioned, each client receives the
same set of data samples but with a different set of features,
where the class label is only held by one of them.

b) Model Selection: Once the data is distributed among the
clients, the next step would be the selection and deployment
of the model. Depending on the task, we can choose between
supervised learning models, such as decision tree models;
unsupervised learning models such as clustering models; or
any other traditional ML model or deep learning model. As in
any traditional learning approach, the model to be used in the
federated scenario will much depend on the problem to be
faced. For example, convolutional architectures based on con-
volutional neural networks (CNN) have been proven to work
well for image classification problems [68], recurrent architec-
tures based on recurrent neural networks (RNN) have been
widely used for text classification, SA, or temporal prediction
problems [69], [70], and other traditional machine learning
approaches such as decision trees or support vector machines
have been applied for years to simpler problems with tabular
data, such as bank credit risk prediction [71]. When there is
not a great amount of data available or there is a non-IID data
distribution among the clients, it can be interesting to use pre-
trained models and fine-tune them for the task to be solved
[72], [73]. As a result, we can train large models and take

advantage of their knowledge, getting better models and
requiring fewer resources than training them from scratch
[74].

c) Aggregation Strategy: All the aforementioned models
have different adaptations to the FL setting, driven by the
aggregation step, where local models are combined. If the
model can be expressed as an array of parameters (i.e., deep
learning models), a generic and simple aggregator like
FedAvg can be chosen. FedAvg performs the weighted aver-
age of the collection of local client models, by computing the
weighted average of the arrays of parameters, where each
array of parameters corresponds to a local client model and
the weight factor is the proportion of the client data volume to
the total data volume. Note that, there exists more complex
variants of FedAvg, designed to alleviate the difficulties asso-
ciated to non-IID-ness, Byzantine attacks or the lack of per-
sonalization [75]. Conversely, if the chosen model cannot be
expressed as an array of parameters (such as decision trees or
k-means clustering), an advanced and specific aggregator
should be selected or implemented ad-hoc to collaboratively
learn such a model in a FL scenario.

Further along this methodological step, in general, the same
type of model is selected for all clients, and a first version of
the model is distributed among them. However, other
approaches enable each client to use a model with a different
structure, which is then aggregated by the central server usu-
ally following an ensemble approach [76], [77]. While the for-
mer makes it generally easier to aggregate local models and
speeds up the convergence of the global model, the latter
overcomes the problem where small participating devices may
not have equal access to computing resources, potentially not
being capable of running complex models.

d) Training and Evaluation Strategy: The last remaining
step of our methodological guidelines is to design the training
strategy, which involves several aspects such as defining the
number of training rounds (i.e., the number of communica-
tions between server and clients to converge to the joint
model), the number of clients participating in each round (in
some cases, only a fraction of the clients participate in each
round), the optimizer, or any other parameter of specific to the
model, as well as the evaluation method of the trained model.
This evaluation should be considered at two levels: client level
and global level. The former considers a set of test metrics
designed to evaluate the performance of a FL model accord-
ing to the specific needs and target specifications of each
client. Given the potentially non-IID distribution of each
client, their evaluation is not enough to assess the perfor-
mance of the whole FL model. Nevertheless, these values in
combination with other statistical properties can be devised to
select certain clients to aggregate in each step [78]. While the
global level evaluation also considers a set of test metrics to
evaluate the performance of a FL model from a wider perspec-
tive, it considers testing the scalability of the chosen FL
model, i.e., the FL system performance. Consequentially, in
addition to the FL benchmarks presented in LEAF [35], a FL
practitioner must be encouraged to benchmark FL system per-
formance [79]. It is common to assume that all clients uncon-
ditionally want to participate, meaning that there is no reward

 832 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

for each participant other than the globally trained model. Ide-
ally, each client joining a FL process contains a unique and
private local dataset and expects to be fairly rewarded with a
better model [3], [9]. However, realistically, potential clients
have the agency to decide whether to join or remain in the FL
process based on how their individual collaborations will be
rewarded. In this sense, from a game theory perspective it is
possible to provide each client with a fair payoff [80].

VI. Comparative Study of FL and Non-FL Scenarios:
Should FL be Always Considered?

A first question to be addressed is whether FL provides any
benefits with respect to isolated local training (non-FL) when
the data is distributed among several clients. This section elab-
orates on this by presenting a performance comparison
between FL and non-FL strategies when the data is dis-
tributed among several clients, with the aim to show the bene-
fits of collaboratively training a model with FL.

To compare FL and non-FL scenarios, we consider three
cases: 1) A single model trained using all the data in a central-
ized manner, which will be referred to as centralized model;
2) A number of models, each one trained by each of the
clients using only their local data and not sharing any informa-
tion with the other parties, referred to as local models; and 3)
A single shared model trained among all clients but without
exposing their data, i.e., a FL model. The centralized model is
usually considered as an upper-bound theoretical limit for the
performance of the federated model, since a better model is
usually expected if all the data is gathered. However, note that
this model is created only for comparison purposes so imple-
menting it in real-world federated scenarios is not possible,
since the data cannot leave each client to create a single cen-
tralized dataset. Conversely, it is expected that the FL model
performs better than the local models by themselves, since it
should benefit from the collaborative training.

For the experiments, we use the MNIST dataset. As noted in
Section III-A, we consider both IID and non-IID partitions. In
this use case, and to make a fair comparison, we use only one
framework, i.e., TFF for the federated model and TensorFlow
for the baselines. In this way, we ensure that there are no dif-
ferences in the architecture or internal implementation of the
models. Besides, the model is composed of CNN layers, given
their success in image classification tasks [68]. All models are
evaluated using the same set of evaluation data which is as
well IID or non-IID, according to the experiment at hand.

For the experimental setup in the FL scenario, 10 clients
have been considered, whose models have been collabora-
tively trained for a total of 10 rounds, with 5 local training
epochs run before communicating with the central model. The
centralized and local models are trained for a total of 50
epochs. Results of the experiments reported in what follows
are averaged among 10 executions using different seeds,
ensuring the statistical consistency of the comparison. The
experiments were executed in a computer with Ubuntu 18 OS,
an Intel Xeon E5-2698 CPU and 512GB RAM.

a) IID Scenario: We first analyse the results when the data
is IID (see Table III). The table includes the training and test-
ing loss and accuracy metrics, as well as the runtime required

to train and test the models. As expected, the centralized
model performs slightly better than the federated one. The
benefits of collaboratively training a shared model among all
clients are clearly stated when comparing the performance of
the FL model versus the local ones. Note that the runtime in
the federated scenario is higher due to communication over-
head. Although the FL model performs better than the local
ones when the data is IID, in most real-world scenarios the
data distribution is non-IID.

TABLE III

Comparison Among the Federated Model
Versus Baselines With IID Data

Centralized model Local models (IID) FL model (IID)

Train loss 0.026 0.064 0.043

Train accuracy 0.992 0.983 0.989

Test loss 0.047 0.113 0.090

Test accuracy 0.985 0.966 0.973

Runtime (s) 140.7 16.1 749.5

b) Non-IID Scenario: In Table IV a comparison among the
local and FL models using non-IID data is performed. Note
that, in this case, it does not make sense to compare against a
centralized model, since we cannot refer to non-IID data if it
is not distributed. For such experiments with non-IID data,
two different configurations have been considered: 10 clients
and 10 FL rounds, as in the previous case, and 20 clients with
20 learning rounds. On average, each client in the MNIST
data has less than 100 images, which is insufficient to build a
good model.

TABLE IV

Comparison Between the Federated Model Versus Local
Ones With Non-IID Partitions

Local models
(non-IID)

FL model
(non-IID)

10 clients 10 rounds

Train loss 2.173 0.658

Train accuracy 0.311 0.851

Test loss 2.243 1.063

Test accuracy 0.192 0.640

Runtime (s) 2.4 27.9

20 clients 20 rounds

Train loss 4.119 0.257

Train accuracy 0.869 0.928

Test loss 4.371 0.451

Test accuracy 0.527 0.852

Runtime (s) 4.6 75.9

When running the experiment with 10 clients and 10 learn-
ing rounds, the local models achieve poor performance, with a
test accuracy lower than 0.2. In the same scenario, the FL
model achieves acceptable performance, but it is still possible
that more data or epochs may be needed to get a better model,
given the limited amount of data that each client has in this
case. Conversely, when training the models with more clients
and for a higher number of epochs, we observe that the FL

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 833

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

model obtains much better performance (with an accuracy
over 0.85 in test), and still improves the performance of the
local models. Thus, the model performance varies depending
on the number of clients or data available, which might be
fixed by the environment, and by the number of training
rounds performed, which may be adjusted; in any case, the
benefits of FL versus isolated local models are clearly stated.

c) Final Conclusions: Considering the above experimental
results, we conclude that:

● If we face a scenario where multiple local clients aim to
build a model, but they cannot (or do not wish to) share their
data, and it is recommended to build a model collaboratively
using FL. This recommendation is even more important when
the data is non-IID, which is the most common case in real-
world scenarios, not only because better results can be
obtained (as Tables III and IV clearly expose), but also beca-
use the model can be enriched with more knowledge.

● When collaboratively building a model, the average
improvement in testing accuracy among the different evalu-
ated scenarios when compared to isolated local model train-
ing is around 98%, which is 230% higher than in non-IID sce-
narios with 10 clients and 10 learning rounds.

VII. Federated Learning for Practitioners:
Exemplary Use Cases

We proceed by presenting six exemplary use cases to study,
from a practical perspective, FL scenarios, several ML prob-
lems and demonstrate the process to solving them with three
selected frameworks. In all cases, the workflow proposed in
Section V is followed. Several scenarios are considered
according to the diversity of data and models, as follows.

First, Section VII-A demonstrate how to perform an image
classification using deep learning models in a HFL setting
(Use Case 1 (UC1)). Next, Section VII-B delves into a SA
classification problem using deep learning models in HFL
(Use Case 2 (UC2)). Section VII-C showcases how to per-
form VFL classification using decision trees, with a tradi-
tional ML algorithm interpretable by design (Use Case 3
(UC3)). Section VII-D introduces a method to train FL mod-
els with DP (Use Case 4 (UC4)). Finally, Section VII-E illus-
trates the training of unsupervised clustering models in HFL
(Use Case 5 (UC5)), whereas VII-F concludes the section by
showing the training of clustering models in a VFL setting
(Use Case 6 (UC6)).

Before describing them, we pay attention to the three
selected frameworks that we consider relevant for further
analysis: TFF, Flower and FATE.

● TFF: an open-source ML platform that extends the widely
known TensorFlow to perform federated ML. TensorFlow is a
reference platform in deep learning, which has great popular-
ity and support from the community and its developers. There-
fore, users who are familiar with TensorFlow and want to start
developing models for FL will find it much easier to do so in
TFF than in any other platform.

● Flower: Flower has gained popularity recently, given that
it is much simpler and more familiar to use than other plat-
forms. Although it was launched more recently than TFF, it
has a community supporting it and it is actively maintained.
The general characteristics of both TFF and Flower are very
similar, but TFF partially supports the creation of non-IID
data partitions and offers slightly more support for DP. How-
ever, it should also be noted that, while TFF allows defini-
tions of any deep learning model that could be created in Ten-
sorFlow and Keras, Flower also allows using models written
in PyTorch, which is another major tool for deep learning.

● FATE: Finally, since neither TFF nor Flower consider
VFL scenarios within their frameworks, we have selected
FATE, which does. Compared to the rest of the frameworks
that consider VFL, FATE is the one that offers the most
options and has the most complete and clear documentation.
As subsequently presented, the implementation of FATE’s
code is not based on any other prior framework (as TFF and
Flower were on TensorFlow, Keras or PyTorch), but defines
its procedure based on a pipeline where different components
are added, compiled and ran.

Unless otherwise indicated in any of the use cases, the same
experimental setup as in Section VI is used.

The most important code excerpts required to complete the
use cases are presented in the paper. The whole use cases are
available as Python notebooks on the following website:
https://github.com/ari-dasci/S-TutorialFL. Notebooks are fully
documented so that the user can run and reproduce the results,
or even modify them in a way that maximizes the learning and
understanding of the different frameworks and the FL work-
flow itself.

A summary of the use cases is presented in Table V, accord-
ing to the different aspects described in the methodology for
designing a FL scenario, such as the problem type, being
either HFL or VFL; if the data used has an inherent federated
distribution; whether the dataset is split as IID or non-IID
among the clients; which kind of aggregator (generic or spe-
cific) is used; and which kind of model is used to solve the
task at hand.

TABLE V

Summary of Use Cases According to the Methodology to Design a FL Scenario

Use case Problem type Framework Naturally federated data Data distribution Aggregator Model

UC1 HFL TFF, Flower, FATE Yes/No non-IID/IID Generic CNN & Dense deep neural network

UC2 HFL TFF, Flower No IID Generic Deep neural network

UC3 VFL FATE No non-IID Specific Decision trees

UC4 HFL TFF Yes/No non-IID/IID Generic CNN with DP

UC5 HFL TFF No IID Specific k-means

UC6 VFL FATE No non-IID Specific k-means

 834 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

A. UC1: Image Classification Using Deep Learning in HFL
In recent years, different deep learning techniques have

been used to solve a plethora of problems. Besides, image
classification is one of the most common challenges in ML. In
this case, we demonstrate the process of performing image
classification using the MNIST dataset.

Following the methodology described in Fig. 6:
1) Problem Type: The first step is to determine which prob-

lem we tackle. In this case, the problem is reported as HFL,
i.e., each client holds different data patterns following the
same input feature set. As the three selected frameworks
(TFF, Flower, and FATE) can deal with HFL problems, all of
them are used.

2) Federated Distribution: In this use case, we deal with
two different data distributions: i) the intrinsic non-IID parti-
tion is considered, so that each client receives digits written by
a unique user and ii) the whole dataset is divided into simu-
lated IID partitions, so the data in each client follows a simi-
lar distribution.

3) Model Selection: Two different deep learning networks
are used to solve the problem: one including a CNN layer,
which is widely used for image classification [68], and
another using only densely connected neural layers, which is
less complex.

4) Aggregation Strategy: As deep network parameters are
vectorizable, a generic aggregator such as FedAvg is used.

5) Training and Evaluation Strategy: Finally, to be as close
as possible to real-world settings where there are usually no
shared data fragments (i.e., no global test set is available), the
evaluation is carried out by assessing the model over the local
test data sets at each client, reporting the average value of the
performance metrics. Such test sets will also have either an
IID or non-IID distribution, according to the type of partition-
ing that was also used for training.

Firstly, we demonstrate the process of solving the use case
with TFF. In TFF, there are two main ways to load the data: i)
loading those datasets that TFF provides specifically designed
for their platform, which are already federated as non-IID par-
titions, or ii) loading any other dataset and distributing it
among the clients. In Listing 1, the non-IID partitioned
MNIST data is loaded from TFF (each instance is already
assigned to a client); while in Listing 2, the traditional MNIST
dataset is loaded from tensorflow datasets package and trans-
formed into a dataframe with a random client id, so that the
IID partition can be created later. After loading the data as
presented, it must be preprocessed to match the model
required input structure and distributed among the different
clients. Note that in this case, we present the two possibilities
presented in the HFL scenario in Section V: either having an
inherently federated dataset (Listing 1) or simulating the parti-
tioning and distribution of the data among clients (Listing 2).

28×28

To define the models, a method that returns a Keras model
must be created. In Listing 3 we show how to create a CNN; a
similar process should be followed to create any other net-
work architecture. For this specific problem, the data is first
reshaped, so it is represented as a pixel matrix. Later, a
two-dimensional CNN layer with 32 filters, a kernel size of

5×5 pixels, and a ReLU activation function is created, which
ends with a dense layer with 10 output units, one for each out-
put class. In addition, a method that creates the model for the
federated scenario, including not only the network to use but
also the input specification, loss, and evaluation metrics
should be created. In this case, categorical cross-entropy loss
and accuracy are used, given the output nature of the problem.
A more in-depth analysis on CNNs for image classification
can be found in [68].

To train in TFF, a training strategy should be first defined.
As the model can be expressed as an array of parameters, a
generic aggregator as FedAvg is employed (see Section V).
Since an unweighted FedAvg method is used in this case, each
client has the same importance in the learning process. Never-
theless, a weighted FedAvg approach could also be used,
where the contribution of each client to the global model is
biased by the amount of data available locally. Besides, Adam
is used as the optimizer; note that different learning rates may
be set for the client and the server. Once the process is initial-
ized, the model is collaboratively trained for several rounds.
The choice of the number of rounds can be driven by the spe-
cific requirements of the problem, such as runtime constraints
or the convergence and performance achieved by the model.
This process is presented in Listing 4.

Listing 1. UC1: image classification using deep learning in HFL in TFF.
Loading TFF’s MNIST dataset.

Listing 2. UC1: image classification using deep learning in HFL in TFF.
Loading MNIST from other sources.

Listing 3. UC1: image classification using deep learning in HFL in TFF.
Creating a CNN model.

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 835

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

In contrast, Flower provides neither non-IID partitioned
datasets nor mechanisms to create such partitions. As we do
not have an inherently federated dataset, the MNIST dataset is
loaded from PyTorch’s torchvision module, and later it is IID
partitioned among the different clients, following a simple
uniform random data distribution (Listing 5).

Listing 5. UC1: image classification using deep learning in HFL in Flower.
Loading the MNIST dataset.

5×5

As previously mentioned, Flower allows using either Keras
or PyTorch models. To show an alternative to the previous
case, in Flower we use PyTorch models. In Listing 6, an
example method to create a CNN model is presented. We note
that although the code snippet is different from that of TFF,
the structure of the network is the same: a two-dimensional
CNN layer with 32 filters and kernel size of pixels,
ReLU activation function, and a final dense layer with 10 out-
put units. A similar process should be followed to create other
architectures.

Listing 6. UC1: image classification using deep learning in HFL in Flower.
Creating a CNN model.

In Flower, the user must define the train and test methods
(as if for a centralized scenario). To adapt such methods to the

FlowerClientfederated scenario, first a class is defined, so
each client in the federated simulation is an instance of such
class and has its data and copy of the network. To allow
Flower to create client instances and simulate the model distri-
bution (see Section V), it is necessary to create a method such
as the one shown in Listing 7.

Listing 7. UC1: image classification using deep learning in HFL in Flower.
Method to create client instances.

Flower’s FedAvg implementation is used in this example to
train the model in the federated scenario. Note that more met-
rics can be reported if the user defines their strategy (as shown
in the notebook). To start the simulation, we must indicate the
method to create the clients, how many clients are involved,
the configuration for the server (including the number of
rounds), and the strategy to follow, as presented in Listing 8.

Listing 8. UC1: image classification using deep learning in HFL in Flower.
Training in the federated scenario.

To conclude with the implementation of this use case, we
show how to perform image classification in FATE. The first
thing to note about FATE is that, although running on a sin-
gle machine, the user must set up different clients. For that
purpose, each client is assigned a different id to simulate the
real-world scenario, and they are assigned as either guest or
host roles. In this case, many hosts can be configured, we
define the first client as the guest and the rest as hosts.

In addition to those roles, there is also an arbiter role, which
orchestrates the learning process. FATE is based on the cre-
ation of a pipeline, so once created, the id of each participant
is indicated (Listing 9).

Reader

FATE does not provide datasets, but they can be loaded
from external sources. For such a purpose, the user must con-
figure a component, as shown in Listing 10, where the
data path is specified. In this case, the dataset is not directly
loaded from the external source within the code, but MNIST
images have been downloaded and placed in a directory
divided into folders for each client and train/test partition, so
that FATE can read them.

It should also be noted that, in the HFL scenario, FATE
only allows using networks comprising PyTorch’s dense lay-
ers. Thus, in this case, Listing 11 demonstrates the implemen-
tation of only the dense architecture in FATE, but not the one
comprising CNN layers. This network is simpler than the

Listing 4. UC1 of image classification using deep learning in HFL in TFF.
Training in the federated scenario.

 836 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

28×28 = 784
previous ones, considering the input as a sequence of

 input units, which are transformed into 32 hid-
den layer units with a linear or dense layer, uses a ReLU acti-
vation function, and ends again with 10 output units, one for
each different class.

HomoNNTo define the training process, the class is used
(Listing 12). It includes the definition of the model to use,
loss, optimizer, dataset, and training strategy. The parameters
are the same as those used in previous cases.

nn_0

fit()

After creating each of the components (such as the in
Listing 12), they must be added to the pipeline as shown in
Listing 13. The training process is started once the pipeline is
compiled and called the method. The creation of such
pipeline is further described in the corresponding notebook.

Once we describe how to implement the solution to the use
case in each of the platforms, we show some results obtained
from their execution. In Table VI we report the training and
testing loss and accuracy obtained by the models (both the
convolutional and dense architectures; except for FATE,
which does not support CNNs), as well as the required run-
time to perform the federated training and evaluation. Besides,
note that FATE does not report loss value for testing data. To

date, FATE was unable to deal with more than 4 hosts, so
FATE’s experiments were executed with only 5 clients instead
of 10.

It can be first observed that the accuracy results between the
different frameworks are similar, and their differences may be
given by implementation differences in the models. Moreover,
results corresponding to TFF and Flower show that, as
expected, the convolutional architecture performs better for
image recognition purposes compared to a simpler architec-
ture. In fact, it should be noted that only 10 global learning
rounds have been used for the experiments, but better results
may be obtained if it were executed for a higher number of
rounds. According to execution times, there is no clear differ-
ence between TFF and Flower, while TFF’s dense network

TABLE VI

Results of UC1 With the Image Classification Task Using
Deep Learning in HFL for the Three Frameworks and

Two Network Architectures. N/A Values Indicate
That Neither the CNN Could be Built in FATE Nor

Could the Testing Loss be Reported in FATE

TFF Flower FATE

Dense

Train loss 0.192 0.002 1.489

Train accuracy 0.947 0.991 0.968

Test loss 0.276 0.006 N/A

Test accuracy 0.922 0.965 0.947

Runtime (s) 53.6 198.5 1516.7

CNN

Train loss 0.043 0.000 N/A

Train accuracy 0.989 1.000 N/A

Test loss 0.090 0.002 N/A

Test accuracy 0.973 0.987 N/A

Runtime (s) 749.5 337.1 N/A

Listing 9. UC1: image classification using deep learning in HFL in FATE.
Create a pipeline and set roles.

Listing 10. UC1: image classification using deep learning in HFL in FATE.
Creating a Reader component.

Listing 11. UC1: image classification using deep learning in HFL in FATE.
Creating a dense network model.

Listing 12. UC1: image classification using deep learning in HFL in FATE.
Configure the federated training.

Listing 13. UC1: image classification using deep learning in HFL in FATE.
Configure pipeline and train.

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 837

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

runs faster than Flower’s, Flower is faster at executing the
CNN. However, it is clearly shown that FATE is much slower
than the rest of the frameworks. Therefore, according to the
presented results, Flower might be the best option using a con-
volutional architecture for image classification, obtaining the
best performance much faster than TFF. In contrast, FATE
does not seem to be a suitable option for HFL image classifi-
cation purposes. However, and as previously stated, such a
selection might also be biased by other factors; for example,
an expert user of TensorFlow might choose TFF over Flower
if the runtime is not of crucial importance, since the learning
curve for creating the FL models will be much lower.

B. UC2: Sentiment Analysis Using Deep Learning in HFL
NLP problems have also topped the literature topics in ML,

even more with the growth of deep learning models in the last
decade. In this use case we show how to perform SA with the
Sentiment140 dataset, using a pretrained network instead of
building it from scratch.

Following the proposed methodology:
1) Problem Type: The first step is to check the problem

under consideration. As in the previous case, the problem in
UC2 is also HFL, where each client holds different tweets that
are private and cannot be accessed by other clients. Having
analysed the limitations of FATE according to the network
architectures (only dense layers are allowed), in this use case,
we only consider TFF and Flower frameworks to solve the
problem.

2) Federated Distribution: For this use case, a simulation of
an IID partition among clients is made, and a pretrained deep
learning network is used, which is specifically designed for
text processing tasks. The weights of this pretrained model are
publicly available9.

3) Model Selection: Fine-tuning a model that has been
specifically proposed for text processing tasks is a promising
starting point, as we rely on a model that has been success-
fully tested on similar modelling problems. The fact that this
model has already been pretrained over similar data makes the
convergence much faster and therefore better performance
levels can be reached within shorter execution times, which
becomes even more important in FL environments due to the
need for reducing the communication overhead.

4) Aggregation Strategy: As would happen with any other
deep learning network, the parameters are vectorizable, so a
generic aggregator is used.

5) Training and Evaluation Strategy: As in the previous use
case, and as would be in most real-world cases, the model is
evaluated using local and private test datasets, where each
client reports the metric values over their own data.

First, we analyse how to solve the use case in TFF, high-
lighting the main differences with the previous use case. In
this case, the data is downloaded from tfds, as in Listing 2, the
percentage of data used both at training and testing phases is
also provided (see Listing 14). Note that the Sentiment140
dataset has 1.6 million instances, a fraction of it is used so that
the experiments can be executed in a reasonable time. Then,

the columns according to the tweet text and its polarity are
selected and the data is transformed to a dataframe, so it can
be later converted to a dataset format required by TFF. The
tweets should also be processed using the text_processing()
method that removes punctuation marks and converts them to
lowercase, among others, as seen in the corresponding note-
book. In order to make IID partitions, a random list of ids is
created so that the instances are randomly distributed among
the clients. Thus, each client has access to a different portion
of the training data.

The Sentiment140 dataset has three classes by default: 0
(negative), 2 (neutral), and 4 (positive). In previous use case
we already dealt with a multi-class problem, so in this case we
are transforming it to a binary one. For that purpose, we
remove the neutral instances, so the aim is to differentiate
between negatively and positively polarized tweets. Such a
process is made as in Listing 15, where tweets with a neutral
polarity are removed. Tweets with a positive polarity (i.e., a
value of 4) are given class value of 1, whereas negatively
polarized tweets are assigned to class 0.

Listing 15. UC2: SA using deep learning in HFL in TFF. Transform the
multi-class problem to a binary one.

True

The model can be defined as in Listing 16. In this case, the
create_keras_model() method creates a network that is based
on a pretrained model, whose weights are frozen during train-
ing. If the user would like to also fine-tune it, the parameter
should be changed to , however it will make the training
phase last longer. Besides adding such pretrained layers, we
include an extra layer with 16 neurons and ReLU activation
function, as well as a final layer with only one output unit.
Since this is a binary classification problem, a single output
unit is enough to predict the polarity of the tweet. Despite
using the above model, any other model from tfhub or other
repositories might be used. Other architecture created by the

Listing 14. UC2: SA using deep learning in HFL in TFF. Loading and pro-
cessing and distributing a percentage of Sentiment140 dataset as IID data.

9 https://tfhub.dev/google/nnlm-en-dim128-with-normalization/2

 838 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

user himself from scratch could be also utilized as well,
although it would not benefit from the advantages described
above when using a pretrained and problem-specific model.
Moreover, the model_fn() method presents some differences
regarding the previous use case, mainly being the loss and the
metrics in use. In this case, binary cross-entropy loss and
accuracy are used instead of their categorical counterparts,
due to the binary nature of the classification problem.

The rest of the process, including the configuration of the
training strategy and finally running the FL algorithm, is per-
formed as in the previous TFF’s use case.

In this use case, we also show how to solve the SA in
Flower; however, minimum differences exist in the solutions
already presented. The data is loaded, processed and bina-
rized as in TFF (see Listing 14 and Listing 15). In Section
VII-A, we mentioned that Flower can handle either Keras or
PyTorch models; while in UC1 we used a PyTorch model; in
this case we use a Keras model so that we show how to use
both of them. Therefore, the model is created as previously
presented in Listing 16. The client_fn() method seen in
Listing 7 remains the same, being the main difference that the
create_keras_model() method is used instead of CNN_Net().
Finally, the training strategy is defined as in Listing 8. The
whole process can be observed in the corresponding notebook.

Once we describe how to perform SA with both TFF and
Flower, we present some results obtained from the execution
of the corresponding experiments. Table VII reports the train-
ing and testing loss and accuracy obtained by the models, as
well as the required runtime to perform the federated training
and evaluation. In this case, although the data is obtained from
the same source and the network architecture is the same
(based on a pretrained Keras model), as well as the learning
strategy, the results are different. It is interesting that Flower
needs only around 40% of the time required by TFF to train
the model, being a much faster option in this case. Besides,
the testing accuracy is higher in Flower’s implementation too,
making it a better option for performing federated SA.

C. UC3: Decision Trees in VFL
In contrast to previous use cases, we shift to a vertically par-

titioned data scenario, following the workflow:
1) Problem Type: The data is vertically partitioned, we face

a VFL problem.
2) Federated Distribution: As in most real-world VFL

cases, in this case we deal with a tabular dataset. Specifically,
we use the Credit2 dataset for bank credit risk prediction.
From the three selected frameworks, only FATE provides sup-
port for vertically partitioned data, so neither TFF nor Flower
are considered in this case. The data in this scenario does not
have an inherent federated distribution (see Table I), so we
simulate it as a non-overlapping attribute-skewed non-IID par-
tition [67].

3) Model Selection: Although most of the work in FL relies
on deep learning models, in this use case we show how to use
traditional ML models such as decision trees, which are par-
ticularly suited to solve this problem. Indeed, decision trees
have been used with considerable success throughout the liter-
ature [71]. We use the FATE’s SecureBoost [81] implementa-
tion over vertically partitioned tabular data.

4) Aggregation Strategy: As decision trees cannot be
expressed as an array of parameters, SecureBoost defines a
specific aggregation scheme so that clients generate a single
global model together.

5) Training and Evaluation Strategy: For the evaluation,
each client holds its portion of test data; thus it is not avail-
able for either the rest of clients or any central server. In this
case, although the test instances must refer to the same indi-
viduals, each client holds their unique and private features for
each instance.

Intersection

In VFL, features are distributed among the clients, however
only one of them owns the label feature. In FATE, the client
with the labels is referred to as the guest, while the other is
referred to as the host. Furthermore, to use SecureBoost, the
arbiter role is not needed. Given that the dataset is not inher-
ently federated, it is artificially partitioned and distributed for
the VFL scenario by FATE. In Listing 17 a CSV file is
uploaded for each client. Any dataset in this format can be
uploaded and used in FATE. Each CSV file contains a differ-
ent number of client-specific attributes, following a non-over-
lapping feature skew non-IID partition, as well as an id for
each instance, so the instances between different clients can be
matched. Such data alignment must be made before training
the model by adding an object to the pipeline
(Listing 18). This allows each party to identify the data

TABLE VII

Results of UC2: (SA) Using Deep Learning
in HFL in TFF and Flower

TFF Flower

Train loss 0.563 0.002

Train accuracy 0.723 0.992

Test loss 0.494 0.006

Test accuracy 0.889 0.966

Runtime (s) 470.2 186.5

Listing 16. UC2: SA using deep learning in HFL in TFF. Creating a model
using pretrained layers.

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 839

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

instances participating in the training, without any further
information besides their id.

Listing 17. UC3: decision trees in VFL in FATE. Loading dataset.

Listing 18. UC3: decision trees in VFL in FATE. Data intersection by id.

The model and training strategy is defined as in Listing 19.
Here, the different parameters of the model are set up: the
objective or loss metric, the encryption type, and other param-
eters for the trees such as the number of trees and maximum
depth. Then, the model component is added to the pipeline
where, the input data of the model is the one received by the
previous clients’ data.

Listing 19. UC3: decision trees in VFL in FATE. Creating SecureBoost
model.

The final steps to start the learning process are to compile
and fit, as previously seen in Listing 13. Besides, the FATE
board allows visualisation of some results, such as the struc-
ture of the built trees. Note that when analysing the trees, they
only contain detailed information about the guest or host par-
ties, depending on who is accessing it, that is, each guest party
cannot observe information about other parties, and vice
versa. For example, Fig. 7 shows the host who is accessing the
tree; thus, in the nodes that are partitioned by its attributes, the
full information of the node is presented, while for those that
are partitioned by guest’s attributes, no information is pro-
vided to prevent leakage of private information.

D. UC4: Introducing Differential Privacy
Previous use cases did not increase privacy during the train-

ing process, as discussed in Section III-D. In this use case, we
show how to use DP techniques when training, thus enhanc-
ing data privacy on the client side.

Following the workflow for designing a FL scenario (see
Fig. 6), the DP process leads either to the phase of model
selection and deployment across nodes phase, or the design of
the training strategy. The former refers to models that intrinsi-
cally protect the privacy of clients and their data by their
design, while the latter refers to additional mechanisms to pro-
tect such privacy, which are independent of the model in use.
In the literature, independent mechanisms are more common,
since they can be applied to a wider range of methods.

The problem to face in this use case is HFL, and TFF is the
only framework in our selection that implements DP mecha-
nisms. The other frameworks are therefore discarded. The rest
of the workflow is very similar to UC1 but including DP in
the training process. Specifically, the widely used DP with
adaptive clipping proposed in [82] is used, as it is the only DP
method available in TFF. For the data, both intrinsic non-IID
data distribution and simulated IID partition are included in
the experimental setup. Having analysed the results in UC1,
only the CNN model is considered, using a generic FedAvg
aggregation strategy.

Differences with UC1 are scarce, as it is simple to incorpo-
rate DP into the learning process. As presented in Listing 20,
the only change to introduce the DP mechanism is to define a
DP aggregator when designing the learning strategy in the last
step of the workflow. This aggregator receives as parameters a
multiplier for the Gaussian noise, as well as the number of
clients expected to participate in each round. Then, the aggre-
gator is set up when creating the federated average process. In
each round, clients send their parameters by inducing a cer-
tain amount of noise on their transmitted values, which fur-
ther protects their local information.

In Fig. 8, we show the variation in performance in terms of
testing accuracy and testing loss of the model trained using
DP with the noise multiplier values. For that purpose, we run
it with both IID and non-IID data partitions, and the reported
results are averaged among 10 executions. It is shown, as
expected, that the higher the noise introduced in the communi-
cation to increase privacy, the poorer the performance.
According to this experiment, a value of 0.1 for the Gaussian
noise multiplier still maintains predictive performance in
terms of accuracy at the same level, in the IID and the non-IID
scenario, while strengthening the local privacy. By further
increasing the noise, performance degrades, but it may recover
by increasing the number of learning rounds. Consequentially,
increasing the noise multiplier above this threshold would
depend on the problem requirements and the privacy con-
cerns of the users involved in the scenario. Futhermore, it
should be noted that the runtime remains constant, disregard-
ing the level of induced noise. Finally, although in UC1 and
UC2 Flower appeared to be the better option, several factors
must be considered when choosing a framework. If privacy
protection in the communications is a design factor to be pri-

 840 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

oritized and DP is hence necessary, to date TFF provides this
functionality and can be a suitable option.

E. UC5: Clustering With K-Means in HFL
In addition to training predictive supervised models, unsu-

pervised techniques can be adapted to FL according to the
workflow presented:

1) Problem Type and Federated Distribution: In this use
case we face an HFL problem, where the MNIST dataset is

IID partitioned. TFF is used, since it is the only one of the
three FL frameworks providing models for clustering tasks in
FL scenarios.

2) Model Selection: As for the learning model, TFF offers
an implementation of k-means; since such a model cannot be
expressed as an array of parameters, a specific aggregator had
to be designed in the TFF implementation to adapt the method
to the federated environment.

3) Aggregation Strategy: At each round, TFF’s k-means
aggregator receives the centroids that each client computed
locally, as well as the number of data points assigned to each
centroid. Subsequently, the server computes the new cen-
troids as a weighted combination of the client’s centroids,
where weights are related to the number of data points repre-
sented by every client centroid.

4) Training and Evaluation Strategy: In this case, to evalu-
ate the clustering model, no testing data is used, but different
unsupervised internal measures are computed to assess its per-
formance, such as the analysis of the centroids. To the date,
the considered frameworks do not offer many options for
evaluating federated clustering models.

28×28

The data loading and partitioning is performed as in Listing
2. The model is created as in Listing 21, where the training
strategy is also set up, considering as main parameters the
number of clusters and the shape of the input data. The input
data shape is set to 784 (input images of pixels), while
the number of clusters is set to the number of different digits
in the dataset. After defining the model, the federated process
is initialized and run for several rounds.

It should be highlighted that, while offering the k-means
method, the options to further manipulate it beyond its train-
ing phase are very limited. Among these options, we can show
the number of instances assigned to each cluster or the coordi-
nates of the clusters’ centroids (Listing 22).

Besides printing the centroids, they can also be plotted. In
Fig. 9 the centroids of a classic centralized k-means are com-
pared to the federated version participating 10 clients; in both
cases, the algorithm ran for 10 iterations. It can be observed
that the outcomes are similar in both cases: most of the cen-
troids represent a clear digit, while there are others where it is
not clear which digit are representing; such centroids com-
prise instances from different classes.

ID: 0
x7 ≤ 0.138 865
HOST: 10001

ID: 1
GUEST: 10000

ID: 3
x9 ≤ 0.234 917
HOST: 10001

ID: 7
GUEST: 10000

ID: 8
GUEST: 10000

ID: 4
x5 ≤ 0.904 712
HOST: 10001

ID: 9
GUEST: 10000

ID: 10
GUEST: 10000

ID: 2
GUEST: 10000

ID: 5
GUEST: 10000

ID: 11
GUEST: 10000

ID: 12
GUEST: 10000

ID: 6
x2 ≤ −1.079 457
HOST: 10001

ID: 13
GUEST: 10000

ID: 14
GUEST: 10000

Fig. 7. Host’s view of a decision tree built by SecureBoost for UC3.

Listing 20. UC4: introducing DP in TFF. Training process including DP
mechanisms.

0 0.05 0.10 0.20 0.50
0

0.2

0.4

0.6

0.8

1.0

IID
Non-IID

Multiplier for DP Gaussian noise

Te
st

 a
cc

ur
ac

y

(a) Testing accuracy

IID
Non-IID

0 0.05 0.1 0.2 0.5
0

0.5

1.0

1.5

2.0

2.5

Multiplier for DP Gaussian noise

Te
st

 lo
ss

(b) Testing loss

Fig. 8. Test results of UC4 as DP noise increases.

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 841

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

F. UC6: Clustering With K-Means in VFL
Clustering methods might be applied to vertically parti-

tioned scenarios too. Following the workflow in Fig. 6:
1) Problem Type and Federated Distribution: In UC6 we

face a VFL scenario over the Credit2 dataset, which is not
inherently federated distributed. Therefore, a non-IID parti-
tion is simulated.

2) Model Selection: Once each client holds its specific data,
FATE’s implementation of k-means is used.

3) Aggregation Strategy: As in the previous use case, a spe-
cific aggregator for k-means models is used.

4) Training and Evaluation Strategy: Similar to UC5, the
evaluation is performed by using internal clustering metrics,
such as the compactness of the clusters and the distance
between them; therefore, the evaluation is carried out on the
same data on which the clustering process was conducted.

The process to perform clustering in a VFL scenario is simi-
lar to the training presented in UC3 (see Section VII-C). The
main differences are the definition of the k-means model and
its training strategy, as presented in Listing 23. The number of
clusters is set to the number of classes in the dataset, and a
maximum of 100 iterations are performed.

Listing 23. UC6: clustering with k-means in TFF. Printing some results.

In order to demonstrate the proper operation of k-means in a
federated scenario, the Davies-Bouldin Index (DBI) [83] is
analysed, and a minimized clustering metric evaluates the
compactness of each cluster as well as the distance to the
remaining clusters. Fig. 10 plots the DBI of both the central-
ized k-means execution using all the attributes in one party,
and the VFL k-means using two different parties. Note that
the k-means automatically stops execution if convergence is
observed or the clusters do not change for many iterations.
The results indicate that DBI in both cases reaches the same
minimum value, however the centralized version requires
fewer iterations. Therefore, it is demonstrated that equally
competitive results can be obtained even if data access is
restricted.

0 10 20 30 40
0

1

2

3 Centralized k-means
VFL k-means

Iterations

D
B

I

Fig. 10. Convergence comparison between centralized and VFL k-means in
UC6.

G. Lessons Learned From a Practical Perspective
Based on the extensive study of the use cases and the analy-

sis of datasets and software frameworks, the following lessons
have been learned, which can be quite useful for practitioners:

● The precision of FL is competitive when compared to the
performance of centralized scenarios, highlighting the non-IID
scenario which is the most common case in real-world prob-
lems. Therefore, FL can be deemed an excellent option for
distributed data silos, not only to preserve privacy, but also for
good performance.

● FL can be applied to different state-of-the-art models,
including deep neural networks (deep learning), unsupervised
learning (e.g., clustering) or interpretable models (such as
decision trees), among other ML approaches. We can find dis-
tributed implementations of FL for almost all ML approaches.

● DP can be added to a FL scenario to ensure data privacy
without increasing running times, at the cost of a performance

Listing 21. UC5: clustering with k-means in HFL in TFF. Defining k-
means model.

Listing 22. UC5: clustering with k-means in HFL in TFF. Printing some
results.

c0 c1 c2 c3 c4

c5 c6 c7 c8 c9

(a) Centroids in centralized k-means

c0 c1 c2 c3 c4

c5 c6 c7 c8 c9

(b) Centroids in federated k-means with 10 clients

Fig. 9. Comparison of k-means centroids using either the centralized or the
federated version in UC5.

 842 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

penalty. This has been observed in Fig. 8 (showing the degra-
dation of performance).

● There are several software frameworks for implementing
FL scenarios. However, hardly any of them include function-
alities beyond the basics. Thus, there is still room for research
before software frameworks with a larger range of models and
functionalities become available.

● Among those tools analysed in depth in the experimental
use cases, it has been clearly demonstrated that, although
FATE offers some mechanisms to solve problems in HFL sce-
narios, it offers far fewer options than the rest of the frame-
works and yields significantly worse performance. However,
its applicability to VFL scenarios has been proven to be excel-
lent. In contrast, when facing HFL problems, the choice
between TFF and Flower may depend on several factors, such
as i) the users’ experience in TensorFlow and PyTorch; ii) the
need for introducing data privacy in the process, where TFF
includes DP mechanisms, but Flower does not; iii) the perfor-
mance of the models, where Flower models seems to outper-
form those provided by TFF; or iv) by any other of the charac-
teristics that distinguish them, noted in Table II.

VIII. Selected Trends in Federated Learning Studies
and Machine Learning Approaches

FL has the potential to transform the way we approach ML,
making it more efficient, secure, and privacy-preserving. In
this section, we will explore some trends in FL, including
those that arise naturally from its design and those that are
carried over from the ML challenges. Such selected trends in
FL studies are graphically summarized in Fig. 11 and dis-
cussed in the rest of the section.

Attacks & defenses in
federated learning

Section
Ⅶ-A

Personalized
federated
learning

Section
Ⅶ-B

Section
Ⅶ-C

Section
Ⅶ-D

Section
Ⅶ-E

Federated
transfer
learning

New ML tasks
in federated

learning

NLP &
sentiment
analysis in
federated
learning

Selected
trends in
federated
learning

Fig. 11. Selected trends in FL discussed in this manuscript.

A. Attacks and Defences in Federated Learning
As with any ML paradigm, FL is vulnerable to adversarial

attacks [27]. The vast majority of the attacks in ML are built
upon the manipulation of training data by third-parties [84].
FL, by definition, is exempt from such attacks as training data
is inaccessible. However, it is exposed to numerous adversar-
ial attacks, either from clients or the server, as well as from
third parties in communications.

There is a wide range of possibilities when it comes to cate-

gorizing attacks according to different criteria such as the ori-
gin of the attack, the attacker’s knowledge, the objective of
the attack, and so forth [85], [86]. The main attack types are
attacks to the model, with the aim of modifying the behaviour
of the federated model, and privacy attacks, which attempt to
infer some information about the training data allocated
among the clients, namely: Property Inference Attacks [87],
Feature Reconstruction Attacks [88] and Membership Infer-
ence Attacks [89].

Defensive strategies have been developed to address these
types of attacks [90]–[92]. The nature of these defences, like
that of the attacks, is diverse, and categorizations can be found
based on various classification criteria. According to the place
where the defence is allocated, we distinguish between: 1)
Server defenses, which assume that the server is reliable and
are usually based on robust aggregation operators, anomaly
detection or the application of DP; 2) Client defenses, which
assume that at least a portion of the clients is benign and are
commonly based on the application of DP; and 3) Communi-
cation channel defenses, which embrace secure implementa-
tions of FL as SMC (see Section III-D1).

B. Personalized Federated Learning
FL introduces several advantages regarding the centralized

ML such as generalization, privacy, and reduction of the com-
munications. However, this solution does not address two
desirable features of a model such as producing poor conver-
gence on highly imbalanced data, and the customization of the
models to the different clients’ specifications. On one hand,
the convergence of FL models degrades significantly when
data imbalance is present. This performance degradation is
attributed to the so-called client drift phenomenon [93]. Since
the global model is averaged from multiple clients, it may not
generalize well in a client whose data distribution has outliers.
Thus, having a single model is often insufficient for practical
applications of FL having imbalanced datasets from multiple
clients. Personalized federated learning (PFL) [94] arises as a
solution to both challenges without losing sight of the
attributes provided by FL.

There are several proposals to achieve PFL. In [95] the fol-
lowing categorization of strategies for PFL is proposed:

● Global Model Personalization: The performance of PFL
is directly dependent on the generalization performance of the
global model, which is the reason why many PFL approaches
aim to improve the performance of the global model under
data imbalance. Within this category, a distinction is made
between data-based approaches, based on mitigating the client
drift problem by reducing the statistical heterogeneity among
the clients’ training data, and between model-based appro-
aches, based on learning a global model robust enough for
future customization on clients. Data-based approaches
directly address the data imbalance present in FL at the client
level [96], or select a subset of clients with minimal class
imbalance [97]. In contrast to data-based approaches, which
incur a loss of valuable information associated with the inher-
ent diversity of client behaviors, model-based approaches try
to improve the adaptation performance of the local model by
means of regularization techniques [98].

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 843

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

● Learning Personalized Models: It is designed to address
the customization problem applying different learning para-
digms in the FL setting [43]. Within this category, we distin-
guish between architecture-based approaches, which provide a
personalized model architecture to each client, and similarity-
based approaches, which aim to take advantage of client rela-
tionships to improve performance. Architecture-based approa-
ches focus on training shared layers between clients and some
personalized layers locally at every client [99]. Another archi-
tecture-based approach is to train different architectures using
a public dataset based on the updated consensus, and then to
fine-tune each local model using the private dataset [100]. In
similarity-based approaches, a personalized model is learned
for each client, with related clients learning similar models
through multitask learning to consider pairwise client relation-
ships [101].

C. Federated Transfer Learning
When local datasets do not share sufficient common fea-

tures or samples, FL may struggle. This is where FTL comes
into play. Several researchers have applied FTL in real-world
applications.

A secure FTL framework is formulated in [28], as a tech-
nique that integrates transfer learning into FL to construct a
model from two datasets with different samples and feature
spaces. This approach enables the transfer of knowledge from
a pretrained model on a source dataset to a target dataset that
has different feature spaces or data distributions. The FedSteg
framework [102] uses FTL to detect hidden information in
images for secure image steganalysis. Reference [103] uti-
lized FTL without sharing vocabulary for privacy-preserving
NLP applications in cancer registries. Reference [104] uti-
lized knowledge distillation to train computationally afford-
able CNNs for edge devices. The authors proposed the Group
Knowledge Transfer framework, which optimizes the client
and server model alternatively with knowledge distillation
loss. The larger server model takes features from the edge to
minimize the gap between periodically transferred ground
truth and soft label predicted by the edge model, while the
small model distils knowledge from the larger server model
using private data and soft labels transferred back from the
server.

To summarize, FTL is a promising trend that combines the
strengths of transfer learning and FL, suitable for real-world
applications with privacy concerns or limited data availability.

D. Machine Learning Tasks With Federated Learning
ML techniques have revolutionized the way we approach

data analysis and decision-making. In this section, we explore
their extension to FL and how they can improve its perfor-
mance.

a) Semi-Supervised Federated Learning: This builds upon
the idea of effectively using unlabelled data to enhance train-
ing. The usage of unlabelled data is also motivated by FL
itself, as it imposes strong privacy requirements, which makes
large-scale labelling unfeasible. However, there are also sce-
narios where labeling costs are significantly reduced due to
being mostly automated. A remarkable example is language

modelling, where labelling is achieved through user typing
behavior [14].

Popular semi-supervised learning techniques based on Con-
sistency Regularization [105] and Pseudo-labelling [106] can
be naively applied to FL. However, further adaptation is
required to notably increase the performance of such tech-
niques. Similar adaptations have been developed in parallel by
some authors, showing great success in the process [107].
Additional approaches based on knowledge distillation tech-
niques have also been proposed [108].

While the performance gap between supervised FL and
semi-supervised FL has been notably narrowed [109], there is
still room for improvement, since the field of semi-supervised
FL has received little attention in the literature. The FL
ecosystem can greatly benefit from the latest advances in this
field, as the sources of unlabelled data are constantly growing.

b) Federated Learning for Anomaly Detection: Anomaly
detection is the task of identifying unusual data points or pat-
terns that do not conform to the expected or normal behaviour
and may indicate unusual events that may require further
investigation [110]. The relationship between FL and anomaly
detection becomes essential mainly when dealing with IoT
environments. However, IoT devices have been increasing
their computing power recently, to the point that they can
deploy ML models by themselves. Therefore, to preserve the
privacy of sensor data and to reduce communication over-
heads, many of these anomaly detection methods have been
adapted to federated scenarios.

The work on Intrusion Detection Systems, whose aim is to
detect attempts to compromise the integrity, confidentiality, or
availability of networks, is extensive in federated scenarios
[111]. FL has also been used in financial problems [112],
which is a very common field in anomaly detection. In this
case, it is essential to preserve data privacy to the maximum
extent possible since different private organizations could be
cooperating to detect financial frauds while using sensitive
data. Another major research field that benefits from the com-
bination of FL and anomaly detection is Predictive Mainte-
nance [113]. In many industrial settings, the machinery is
monitored and sensorized so that, it allows the construction of
models to detect anomalous behaviour that may be related to
an early or future breakdown of such machinery.

Not only have anomaly detection methods been adapted to
FL environments, but also some anomaly detection mecha-
nisms have been incorporated in certain cases to improve the
security of existing FL algorithms. The main use case has
been the detection and defence from poisoning attacks, by
detecting clients that may be operating anomalously regard-
ing the rest of the participants, thus discarding their updates or
completely removing them from the training process. [114],
[115].

E. Natural Language Processing and Sentiment Analysis in Fed-
erated Learning

NLP and SA are two critical fields in ML that have numer-
ous applications in areas such as customer service, marketing,
and social media analysis [116]. In the FL context, NLP and
SA are used to analyse natural language text data distributed

 844 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

across multiple devices or servers without the need for data to
be centralized [117]. This approach allows for the creation of
robust models without the need to share sensitive data, thereby
addressing privacy concerns. However, the distributed nature
of FL presents several challenges for NLP and SA. For exam-
ple, due to variations in the data across different devices, the
model must be able to learn from data with different distribu-
tions and handle noisy data. Furthermore, data imbalance and
heterogeneity across different devices pose additional chal-
lenges for NLP and SA [118].

Despite these challenges, NLP and SA have been success-
fully implemented in FL [8]. One approach is to use transfer
learning techniques to pretrain the model on large, centralized
datasets before fine-tuning it on the distributed data. This
approach has been shown in Section VII-B to be effective in
improving model performance on distributed data, where
clients use a pretrained model to solely train the last layers of
the model, converging faster than training the whole model
from scratch. Another approach is to use DP techniques to
protect the privacy of individual data points during training.
Another nascent approach is to apply contrastive representa-
tion learning to handle crowds [119], in which FL can help to
deal with numerous individuals to contribute to data labelling
and annotation tasks, which is a bottleneck in NLP. However,
these techniques can lead to decreased model accuracy, and
more research is needed to address this issue.

In summary, NLP and SA are critical fields that have
numerous applications in ML, and their implementation in FL
offers a promising solution for privacy-preserving ML.
Despite the challenges posed by the distributed nature of FL,
successful implementations have been achieved through trans-
fer learning and DP techniques. Ongoing research is needed to
address the remaining challenges and to further advance the
field of NLP and SA in FL.

IX. Conclusions

As has been shown in this tutorial, FL has become a crucial
field for training machine learning models across decentral-
ized environments. In situations when data privacy is a hard
requirement, FL allows ML models to be trained locally while
leveraging the knowledge gathered from other nodes of the
decentralized network without any need for centralized data
transfer. This reduces the vulnerability of sensitive data and
mitigates the risk of interception by third parties.

The instructive view on FL provided in this tutorial encom-
passes FL foundations from key elements to architectures and
categories, a design methodology, eighteen software frame-
works, six exemplary use cases, and selected trends. This
material can be useful for developers and researchers willing
to gain a comprehensive understanding of this field. More-
over, the use cases covering different possible real-world sce-
narios have been thoroughly described, and we have dis-
cussed how to solve them with three different frameworks
(TFF, Flower and FATE). This implementation guide aims to
support practitioners when designing and building reliable and
secure ML models that respect data privacy and that provide
accurate and useful results for a wide range of distributed
computing applications and environments.

On an overarching note, FL has grown in maturity over the
years, due to the large number of studies and different frame-
works proposed to solve FL problems. However, there is a
widespread consensus around the promising path that lies
ahead for this research area. New challenges and opportuni-
ties will surely arise for future research, which are regularly
discussed in prospective surveys on the topic [120]–[126].

Beyond the realm of research, recent data privacy regula-
tions (including the Data Governance Act [127] and the Artifi-
cial Intelligence Act [128] of the European Parliament, among
others) have emphasized the significance of privacy as one of
the fundamental requirements for trustworthy and responsible
AI. In this regard, FL can be identified as a pivotal technol-
ogy to ensure that sensitive data remains confidential in high-
risk scenarios throughout the entire AI life cycle. This regula-
tory context elevates FL as a field of utmost relevance for
realizing trustworthy and responsible AI [129], highlighting
the need for reference material as the tutorial contributed in
this manuscript. Trends in responsible AI, stressing privacy-
preserving techniques and security enhancements, are closely
aligned with the need for safeguarding sensitive user data and
ensuring the ethical treatment of individuals’ information.
These needs lie at the heart of FL. As FL becomes increas-
ingly integrated into practical problems arising from different
sectors, aligning its development with responsible AI guide-
lines not only fosters trust and societal acceptance on this
decentralized machine learning approach, but also reinforces
its responsible and sustainable growth in the future.

Appendix
Abbreviations, Notations and Framework URLs

In this Appendix, we include the list of abbreviations used
throughout the manuscript, as follows:

UC1 Use Case 1
UC2 Use Case 2
UC3 Use Case 3
UC4 Use Case 4
UC5 Use Case 5
UC6 Use Case 6
AI Artificial Intelligence
FedAvg Federated Averaging
FL Federated Learning
IoT Internet of Things
IoHT Internet Of Healthcare Things
IID Independent and Identically Distributed
ML Machine Learning
non-IID Non Independent and Identically Distributed
HFL Horizontal Federated Learning
VFL Vertical Federated Learning
FTL Federated Transfer Learning
SMC Secure Multiparty Computation
HE Homomorphic Encryption
DP Differential Privacy
LDP Local Differential Privacy

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 845

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

CDP Central Differential Privacy
TFF TensorFlow Federated
PyS PySyft
FAT FATE
Pad PaddleFL
Flo Flower
Xay Xaynet
IBM IBM FL
Sub Substra
OFL OpenFL
FML FedML
FJx FedJax
101 Backdoors 101
FLb FedLab
SFL SimFL
EFL easyFL
TFL TorchFL
AFL APPFL
NVF NVFlare
CNN Convolutional Neural Networks
RNN Recurrent Neural Networks
NLP Natural Language Processing
DBI Davies-Bouldin Index
PFL Personalized Federated Learning
SA Sentiment Analysis

We also provide a table of the notation employed in formal
definitions in Table VIII.

TABLE VIII

Notation Employed in Formal Definitions

Term Definition
{C1, ..., Cn} Set of data owners (also known as clients).

Di Training data of client Ci.

Li Local learning model (expressed as parameters) of client Ci.

G Global learning model.

t Round of learning.

Lt
i

Parameters of local model Li at the t-th round before training.

L̂t
i

Parameters of local model Li at the t-th round after training.

Gt Parameters of the global learning model at the t-th round.

X Feature space.

Y Label space.

I ID space.

Furthermore, we state that each software framework
reviewed were accessed using the following URLs as of Octo-
ber 3rd, 2023:

● TensorFlow Federated https://github.com/tensorflow/fed-
erated

● PySyft https://github.com/OpenMined/PySyft
● FATE https://github.com/FederatedAI/FATE
● PaddleFL https://github.com/PaddlePaddle/PaddleFL

● Flower https://github.com/adap/flower
● Xaynet https://github.com/xaynetwork/xaynet
● IBM FL https://github.com/IBM/federated-learning-lib
● Substra https://github.com/Substra/substra
● OpenFL https://github.com/intel/openfl
● FedML https://github.com/FedML-AI/FedML
● FedJax https://github.com/google/fedjax
● Backdoors 101 https://github.com/ebagdasa/backdoors101
● FedLab https://github.com/SMILELab-FL/FedLab
● SimFL https://github.com/Xtra-Computing/SimFL
● easyFL https://github.com/EasyFL-AI/EasyFL
● TorchFL https://github.com/vivekkhimani/torchfl
● APPFL https://github.com/APPFL/APPFL
● NVFlare https://github.com/NVIDIA/NVFlare

References
 Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, May 2015.

[1]

 T. Goldstein, “Challenges for machine learning on distributed
platforms (invited talk),” in Proc. 32nd Int. Symp. Distributed
Computing, New Orleans, USA, 2018, pp. 2:1–2:3.

[2]

 J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving
communication efficiency,” arXiv preprint arXiv: 1610.05492, 2016.

[3]

 Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated
Learning. Cham, Germany: Springer, 2019.

[4]

 J. Zhu, J. Cao, D. Saxena, S. Jiang, and H. Ferradi, “Blockchain-
empowered federated learning: Challenges, solutions, and future
directions,” ACM Comput. Surv., vol. 55, no. 11, p. 240, Nov. 2023.

[5]

 D. Chen, X. Jiang, H. Zhong, and J. Cui, “Building trusted federated
learning: Key technologies and challenges,” J. Sens. Actuator Netw.,
vol. 12, no. 1, p. 13, Feb. 2023.

[6]

 R. Zong, Y. Qin, F. Wu, Z. Tang, and K. Li, “Fedcs: Efficient
communication scheduling in decentralized federated learning,” Inf.
Fusion, vol. 102, p. 102028, Feb. 2024.

[7]

 L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in
federated learning,” Comput. Ind. Eng., vol. 149, p. 106854, Nov.
2020.

[8]

 European Commission, “Machine learning ledger orchestration for
drug discovery,” 2019. [Online]. Available: https://cordis.europa.eu/
project/id/831472.

[9]

 B. Mahesh, “Machine learning algorithms–A review,” Int. J. Sci. Res.,
vol. 9, no. 1, pp. 381–386, Jan. 2020.

[10]

 D. Wang, W. Yao, T. Jiang, G. Tang, and X. Chen, “A survey on
physical adversarial attack in computer vision,” arXiv preprint arXiv:
2209.14262, 2022.

[11]

 K. Abouelmehdi, A. Beni-Hssane, H. Khaloufi, and M. Saadi, “Big
data security and privacy in healthcare: A review,” Procedia Comput.
Sci., vol. 113, pp. 73–80, Dec. 2017.

[12]

 European Commission, “High-level expert group on artificial
intelligence, ethics guidelines for trustworthy AI,” European Union,
2019. [Online]. Available: https://digital-strategy.ec.europa.eu/en/poli-
cies/expert-group-ai.

[13]

 B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from
decentralized data,” in Proc. 20th Int. Conf. Artificial Intelligence and
Statistics, Fort Lauderdale, USA, 2017, pp. 1273–1282.

[14]

 V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware
for machine learning: Challenges and opportunities,” in Proc. IEEE
Custom Integrated Circuits Conf., Austin, USA, 2017, pp. 1–8.

[15]

 C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos, “Big data
analytics: A survey,” J. Big Data, vol. 2, no. 1, p. 21, Oct. 2015.

[16]

 M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A.
Siddiqa, and I. Yaqoob, “Big IoT data analytics: Architecture,
opportunities, and open research challenges,” IEEE Access, vol. 5,
pp. 5247–5261, Mar. 2017.

[17]

 R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep[18]

 846 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

unsupervised learning using graphics processors,” in Proc. 26th Ann.
Int. Conf. Machine Learning, Montreal, Canada, 2009, pp. 873–880.
 Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” arXiv preprint arXiv: 1806.00582, 2018.

[19]

 K. K. Coelho, M. Nogueira, A. B. Vieira, E. F. Silva, and J. A. M.
Nacif, “A survey on federated learning for security and privacy in
healthcare applications,” Comput. Commun., vol. 207, pp. 113–127,
Jul. 2023.

[20]

 A. Chaddad, Q. Lu, J. Li, Y. Katib, R. Kateb, C. Tanougast, A.
Bouridane, and A. Abdulkadir, “Explainable, domain-adaptive, and
federated artificial intelligence in medicine,” IEEE/CAA J. Autom.
Sinica, vol. 10, no. 4, pp. 859–876, Apr. 2023.

[21]

 S. Naz, K. T. Phan, and Y.-P. P. Chen, “A comprehensive review of
federated learning for COVID-19 detection,” Int. J. Intell. Syst.,
vol. 37, no. 3, pp. 2371–2392, Mar. 2022.

[22]

 X. Han, H. Yu, and H. Gu, “Visual inspection with federated
learning,” in Proc. 16th Int. Conf. Image Analysis and Recognition,
Waterloo, Canada, 2019, pp. 52–64.

[23]

 N. I. Mowla, N. H. Tran, I. Doh, and K. Chae, “Federated learning-
based cognitive detection of jamming attack in flying ad-hoc network,”
IEEE Access, vol. 8, pp. 4338–4350, 2020.

[24]

 N. Rodríguez-Barroso, G. Stipcich, D. Jiménez-López, J. A. Ruiz-
Millán, E. Martínez-Cámara, G. González-Seco, M. V. Luzón, M. A.
Veganzones, and F. Herrera, “Federated learning and differential
privacy: Software tools analysis, the sherpa.ai FL framework and
methodological guidelines for preserving data privacy,” Inf. Fusion,
vol. 64, pp. 270–292, Dec. 2020.

[25]

 M. F. Criado, F. E. Casado, R. Iglesias, C. V. Regueiro, and S. Barro,
“Non-ⅡD data and continual learning processes in federated learning:
A long road ahead,” Inf. Fusion, vol. 88, pp. 263–280, Dec. 2022.

[26]

 N. Rodríguez-Barroso, D. Jiménez-López, M. V. Luzón, F. Herrera,
and E. Martínez-Cámara, “Survey on federated learning threats:
Concepts, taxonomy on attacks and defences, experimental study and
challenges,” Inf. Fusion, vol. 90, pp. 148–173, Feb. 2023.

[27]

 Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang, “A secure federated
transfer learning framework,” IEEE Intell. Syst., vol. 35, no. 4,
pp. 70–82, Jul.–Aug. 2020.

[28]

 C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient homomorphic encryption for cross-silo federated learning,”
in Proc. USENIX Ann. Technical Conf., 2020, pp. 33.

[29]

 J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly)logarithmic overhead,” in
Proc. ACM SIGSAC Conf. Computer and Communications Security,
2020, pp. 1253–1269.

[30]

 C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Proc. 3rd Theory of
Cryptography Conf., New York, USA, 2006, pp. 265–284.

[31]

 T. Wang, X. Zhang, J. Feng, and X. Yang, “A comprehensive survey
on local differential privacy toward data statistics and analysis,”
Sensors, vol. 20, no. 24, p. 7030, Dec. 2020.

[32]

 M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central
differential privacy for robustness and privacy in federated learning,”
in Proc. 29th Annu. Network and Distributed System Security Symp.,
San Diego, USA, 2022, pp. 24–28.

[33]

 R. Eriguchi, A. Ichikawa, N. Kunihiro, and K. Nuida, “Efficient noise
generation to achieve differential privacy with applications to secure
multiparty computation,” in Proc. 25th Int. Conf. Financial
Cryptography and Data Security, 2021, pp. 271–290.

[34]

 S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar, “LEAF: A benchmark for federated
settings,” in Proc. 33rd Conf. Neural Information Processing Systems,
Vancouver, Canada, 2019.

[35]

 The TensorFlow Federated Authors (Google), “Tensorflow federated,”
2018.

[36]

 N. Rodríguez-Barroso, E. Martínez-Cámara, M. V. Luzón, and F.
Herrera, “Backdoor attacks-resilient aggregation based on robust
filtering of outliers in federated learning for image classification,”
Knowl.-Based Syst., vol. 245, p. 108588, Jun. 2022.

[37]

 L. Qu, Y. Zhou, P. P. Liang, Y. Xia, F. Wang, E. Adeli, L. Fei-Fei, and
D. Rubin, “Rethinking architecture design for tackling data
heterogeneity in federated learning,” in Proc. IEEE/CVF Conf.
Computer Vision and Pattern Recognition, New Orleans, USA, 2022,

[38]

pp. 10051–10061.
 Y. Zheng, S. Lai, Y. Liu, X. Yuan, X. Yi, and C. Wang, “Aggregation
service for federated learning: An efficient, secure, and more resilient
realization,” IEEE Trans. Depend. Secure Comput., vol. 20, no. 2,
pp. 988–1001, Mar-Apr. 2023.

[39]

 L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in Proc.
38th Int. Conf. Machine Learning, 2021, pp. 2089–2099.

[40]

 Z. Charles, Z. Garrett, Z. Huo, S. Shmulyian, and V. Smith, “On large-
cohort training for federated learning,” in Proc. 35th Conf. Neural
Information Processing Systems, 2021, pp. 20461–20475.

[41]

 C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer:
Federated learning of large CNNs at the edge,” in Proc. 34th Conf.
Neural Information Processing Systems, Vancouver, Canada, 2020, pp.
14068–14080.

[42]

 H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated
learning on Non-ⅡD data with reinforcement learning,” in Proc. IEEE
Conf. Computer Communications, Toronto, Canada, 2020, pp.
1698–1707.

[43]

 Z. Lian, W. Wang, and C. Su, “COFEL: Communication-efficient and
optimized federated learning with local differential privacy,” in Proc.
IEEE Int. Conf. Communications, Montreal, Canada, 2021, pp. 1–6.

[44]

 N. Rodríguez-Barroso, E. Martínez-Cámara, M. V. Luzón, and F.
Herrera, “Dynamic defense against byzantine poisoning attacks in
federated learning,” Future Gener. Comput. Syst., vol. 133, pp. 1–9,
2022.

[45]

 Y. Zhang, M. Duan, D. Liu, L. Li, A. Ren, X. Chen, Y. Tan, and C.
Wang, “CSAFL: A clustered semi-asynchronous federated learning
framework,” in Proc. Int. Joint Conf. Neural Networks, Shenzhen,
China, 2021, pp. 1–10.

[46]

 T.-M. H. Hsu, H. Qi, and M. Brown, “Federated visual classification
with real-world data distribution,” in Proc. 16th European Conf.
Computer Vision, Glasgow, UK, 2020, pp. 76–92.

[47]

 D. Caldarola, B. Caputo, and M. Ciccone, “Improving generalization
in federated learning by seeking flat minima,” in Proc. 17th European
Conf. Computer Vision, Tel Aviv, Israel, 2022, pp. 654–672.

[48]

 S. K. Prashanthi, S. A. Kesanapalli, and Y. Simmhan, “Characterizing
the performance of accelerated Jetson edge devices for training deep
learning models,” Proc. ACM Meas. Anal. Comput. Syst., vol. 6, no. 3,
p. 44, Dec. 2022.

[49]

 O. Marfoq, C. Xu, G. Neglia, and R. Vidal, “Throughput-optimal
topology design for cross-silo federated learning,” in Proc. 34th Conf.
Neural Information Processing Systems, Vancouver, Canada, 2020, pp.
19478–19487.

[50]

 K. R. Jayaram, A. Verma, G. Thomas, and V. Muthusamy, “Just-in-
time aggregation for federated learning,” in Proc. 30th Int. Symp. Mode-
ling, Analysis, and Simulation of Computer and Telecommunication
Systems, Nice, France, 2022, pp. 1–8.

[51]

 G. Kaissis, A. Ziller, J. Passerat-Palmbach, T. Ryffel, D. Usynin, A.
Trask, I. Jr. Lima, J. Mancuso, F. Jungmann, M.-M. Steinborn, A.
Saleh, M. Makowski, D. Rueckert, and R. Braren, “End-to-end privacy
preserving deep learning on multi-institutional medical imaging,” Nat.
Mach. Intell., vol. 3, no. 6, pp. 473–484, May 2021.

[52]

 D. Manna, H. Kasyap, and S. Tripathy, “MILSA: Model interpretation
based label sniffing attack in federated learning,” in Proc. 18th Int.
Conf. Information Systems Security, Tirupati, India, 2022, pp.
139–154.

[53]

 H. Kasyap and S. Tripathy, “Privacy-preserving decentralized learning
framework for healthcare system,” ACM Trans. Multimed. Comput.,
Commun., Appl., vol. 17, no. 2S, p. 68, Jun. 2021.

[54]

 N. Agarwal, P. Kairouz, and Z. Liu, “The skellam mechanism for
differentially private federated learning,” in Proc. 35th Neural
Information Processing Systems, 2021, pp. 5052–5064.

[55]

 E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. 23rd Int. Conf. Artificial
Intelligence and Statistics, Palermo, Italy, 2020, pp. 2938–2948.

[56]

 F. Lai, Y. Dai, S. S. V. Singapuram, J. Liu, X. Zhu, H. V. Madhyastha,
and M. Chowdhury, “FedScale: Benchmarking model and system
performance of federated learning at scale,” in Proc. 39th Int. Conf.
Machine Learning, Baltimore, USA, 2022, pp. 11814–11827.

[57]

 Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H. Rangwala,
“FedAT: A high-performance and communication-efficient federated

[58]

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 847

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

learning system with asynchronous tiers,” in Proc. Int. Conf. for High
Performance Computing, Networking, Storage and Analysis, St. Louis,
USA, 2021, pp. 60.
 K. Singhal, H. Sidahmed, Z. Garrett, S. Wu, J. Rush, and S. Prakash,
“Federated reconstruction: Partially local federated learning,” in Proc.
35th Conf. Neural Information Processing Systems, 2021, pp.
11220–11232.

[59]

 X. Li, Y. Hu, W. Liu, H. Feng, L. Peng, Y. Hong, K. Ren, and Z. Qin,
“OpBoost: A vertical federated tree boosting framework based on
order-preserving desensitization,” Proc. VLDB Endowment, vol. 16,
no. 2, pp. 202–215, Oct. 2022.

[60]

 T. Qi, F. Wu, C. Wu, L. Lyu, T. Xu, H. Liao, Z. Yang, Y. Huang, and
X. Xie, “FairVFL: A fair vertical federated learning framework with
contrastive adversarial learning,” in Proc. 36th Conf. Neural
Information Processing Systems, New Orleans, LA, USA, 2022, pp.
7852–7865.

[61]

 D. Cha, M. D. Sung, and Y.-R. Park, “Implementing vertical federated
learning using autoencoders: Practical application, generalizability,
and utility study,” JMIR Med. Inf., vol. 9, no. 6, p. e26598, Jun. 2021.

[62]

 X. Chen, S. Zhou, B. Guan, K. Yang, H. Fao, H. Wang, and Y. Wang,
“Fed-EINI: An efficient and interpretable inference framework for
decision tree ensembles in vertical federated learning,” in Proc. IEEE
Int. Conf. Big Data, Orlando, USA, 2021, pp. 1242–1248.

[63]

 Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving
vertical federated learning for tree-based models,” Proc. VLDB
Endowment, vol. 13, no. 12, pp. 2090–2103, Aug. 2020.

[64]

 Y. Liu, Y. Kang, C. Xing, T. Chen, and Q. Yang, “A secure federated
transfer learning framework,” IEEE Intell. Syst., vol. 35, no. 4,
pp. 70–82, Jul.–Aug. 2020.

[65]

 Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-ⅡD
data silos: An experimental study,” in Proc. IEEE 38th Int. Conf. Data
Engineering, Kuala Lumpur, Malaysia, 2022, pp. 965–978.

[66]

 H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-ⅡD
data: A survey,” Neurocomputing, vol. 465, pp. 371–390, Nov. 2021.

[67]

 L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of
image classification algorithms based on convolutional neural
networks,” Remote Sens., vol. 13, no. 22, p. 4712, Nov. 2021.

[68]

 W. Li, L. Zhu, Y. Shi, K. Guo, and E. Cambria, “User reviews:
Sentiment analysis using lexicon integrated two-channel CNN–LSTM
family models,” Appl. Soft Comput., vol. 94, p. 106435, Sept. 2020.

[69]

 S. Wang, J. Cao, and P. S. Yu, “Deep learning for spatio-temporal data
mining: A survey,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8,
pp. 3681–3700, Aug. 2022.

[70]

 S. Bhatore, L. Mohan, and Y. R. Reddy, “Machine learning techniques
for credit risk evaluation: A systematic literature review,” J. Banking
Financ. Technol., vol. 4, pp. 111–138, 2020.

[71]

 A. Hilmkil, S. Callh, M. Barbieri, L. R. Sütfeld, E. L. Zec, and O.
Mogren, “Scaling federated learning for fine-tuning of large language
models,” in Proc. 26th Int. Conf. Applications of Natural Language to
Information Systems, Saarbrücken, Germany, 2021, pp. 15–23.

[72]

 T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for
robust model fusion in federated learning,” in Proc. 34th Int. Conf.
Neural Information Processing Systems, Vancouver, Canada, 2020, pp.
198.

[73]

 D. Liu and T. Miller, “Federated pretraining and fine tuning of BERT
using clinical notes from multiple silos,” arXiv preprint arXiv:
2002.08562, 2020.

[74]

 P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, and F. Piccialli, “Mo-
del aggregation techniques in federated learning: A comprehensive
survey,” Future Gener. Comput. Syst., vol. 150, pp. 272–293, Jan.
2024.

[75]

 T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for
robust model fusion in federated learning,” in Proc. 34th Int. Conf.
Neural Information Processing Systems, Vancouver, Canada, 2020, pp.
198.

[76]

 X. Gong, A. Sharma, S. Karanam, Z. Wu, T. Chen, D. Doermann, and
A. Innanje, “Preserving privacy in federated learning with ensemble
cross-domain knowledge distillation,” in Proc. 36th AAAI Conf.
Artificial Intelligence, 2022, pp. 11891–11899.

[77]

 B. Soltani, Y. Zhou, V. Haghighi, and J. C. S. Lui, “A survey of
federated evaluation in federated learning,” in Proc. 32nd Int. Joint
Conf. Artificial Intelligence, Macao, China, 2023, pp. 758.

[78]

 F. Lai, Y. Dai, S. S. V. Singapuram, J. Liu, X. Zhu, H. V. Madhyastha,
and M. Chowdhury, “FedScale: Benchmarking model and system
performance of federated learning at scale,” in Proc. 39th Int. Conf.
Machine Learning, Baltimore, USA, 2022, pp. 11814–11827.

[79]

 V. Siomos and J. Passerat-Palmbach, “Contribution evaluation in
federated learning: Examining current approaches,” in Proc. 1st
NeurIPS Workshop on New Frontiers in Federated Learning, 2021.

[80]

 K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and Q.
Yang, “SecureBoost: A lossless federated learning framework,” IEEE
Intell. Syst., vol. 36, no. 6, pp. 87–98, Nov.–Dec. 2021.

[81]

 G. Andrew, O. Thakkar, H. B. McMahan, and S. Ramaswamy,
“Differentially private learning with adaptive clipping,” in Proc. 35th
Conf. Neural Information Processing Systems, 2021, pp. 17455-17466.

[82]

 D. L. Davies and D. W. Bouldin, “A cluster separation measure,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 2, pp. 224–
227, Apr. 1979.

[83]

 N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anastasiadis, and G.
Loukas, “A taxonomy and survey of attacks against machine learning,”
Comput. Sci. Rev., vol. 34, p. 100199, Nov. 2019.

[84]

 H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J.-
Y. Sohn, K. Lee, and D. Papailiopoulos, “Attack of the tails: Yes, you
really can backdoor federated learning,” in Proc. 34th Int. Conf.
Neural Information Processing Systems, Vancouver, Canada, 2020, pp.
1348.

[85]

 M. S. Jere, T. Farnan, and F. Koushanfar, “A taxonomy of attacks on
federated learning,” IEEE Secur. Privacy, vol. 19, no. 2, pp. 20–28,
Mar-Apr. 2021.

[86]

 K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
inference attacks on fully connected neural networks using
permutation invariant representations,” in Proc. ACM SIGSAC Conf.
Computer and Communications Security, Toronto, Canada, 2018, pp.
619–633.

[87]

 A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang,
“Updates-Leak: Data set inference and reconstruction attacks in online
learning,” in Proc. 29th USENIX Security Symp., 2020, pp.
1291–1308.

[88]

 D. Wu, S. Qi, Y. Qi, Q. Li, B. Cai, Q. Guo, and J. Cheng,
“Understanding and defending against white-box membership
inference attack in deep learning,” Knowl.-Based Syst., vol. 259, p.
110014, Jan. 2023.

[89]

 L. Lyu, H. Yu, X. Ma, C. Chen, L. Sun, J. Zhao, Q. Yang, and P. S.
Yu, “Privacy and robustness in federated learning: Attacks and
defenses,” IEEE Trans. Neural Networks Learn. Syst., 2022. DOI:
10.1109/TNNLS.2022.3216981

[90]

 Y. Liang, Y. Li, and B.-S. Shin, “Auditable federated learning with
byzantine robustness,” IEEE Trans. Comput. Soc. Syst., 2023. DOI:
10.1109/TCSS.2023.3266019

[91]

 K. Zhang, C. Keliris, T. Parisini, B. Jiang, and M. M. Polycarpou,
“Passive attack detection for a class of stealthy intermittent integrity
attacks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 898–915, Apr.
2023.

[92]

 S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A.
T. Suresh, “SCAFFOLD: Stochastic controlled averaging for federated
learning,” in Proc. 37th Int. Conf. Machine Learning, 2020, pp.
5132–5143.

[93]

 Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He, “A
survey on federated learning systems: Vision, hype and reality for data
privacy and protection,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 4,
pp. 3347–3366, Apr. 2023.

[94]

 A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized
federated learning,” IEEE Trans. Neural Networks Learn. Syst.,
vol. 34, no. 12, pp. 9587–9603, Dec. 2023.

[95]

 Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-ⅡD data,” arXiv preprint arXiv: 1806.00582, 2018.

[96]

 M. Yang, X. Wang, H. Zhu, H. Wang, and H. Qian, “Federated
learning with class imbalance reduction,” in Proc. 29th European
Signal Processing Conf., Dublin, Ireland, 2021, pp. 2174–2178.

[97]

 Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in
Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition,
Nashville, USA, 2021, pp. 10708–10717.

[98]

 M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary,
“Federated learning with personalization layers,” arXiv preprint arXiv:

[99]

 848 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

1912.00818, 2019.
 D. Li and J. Wang, “FedMD: Heterogenous federated learning via
model distillation,” arXiv preprint arXiv: 1910.03581, 2019.

[100]

 Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang,
“Personalized cross-silo federated learning on non-ⅡD data,” in Proc.
AAAI Conf. Artificial Intelligence, 2021, pp. 7865–7873.

[101]

 H. Yang, H. He, W. Zhang, and X. Cao, “FedSteg: A federated transfer
learning framework for secure image steganalysis,” IEEE Trans.
Network Sci. Eng., vol. 8, no. 2, pp. 1084–1094, Apr.–Jun. 2021.

[102]

 M. Alawad, H.-J. Yoon, S. Gao, B. Mumphrey, X.-C. Wu, E. B.
Durbin, J. C. Jeong, I. Hands, D. Rust, L. Coyle, L. Penberthy, and G.
Tourassi, “Privacy-preserving deep learning NLP models for cancer
registries,” IEEE Trans. Emerging Topics in Computing, vol. 9, no. 3,
pp. 1219–1230, Jul.–Sep. 2021.

[103]

 C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer:
Federated learning of large CNNs at the edge,” in Proc. 34th Conf.
Neural Information Processing Systems, Vancouver, Canada, 2020, pp.
14068–14080.

[104]

 D. Berthelot, N. Carlini, I. Goodfellow, A. Oliver, N. Papernot, and C.
Raffel, “MixMatch: A holistic approach to semi-supervised learning,”
in Proc. 33rd Conf. Neural Information Processing Systems,
Vancouver, Canada, 2019, pp. 5049–5059.

[105]

 D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Proc. Workshop on
Challenges in Representation Learning, Atlanta, USA, 2013, pp. 896.

[106]

 W. Jeong, J. Yoon, E. Yang, and S. J. Hwang, “Federated semi-
supervised learning with inter-client consistency & disjoint learning,”
in Proc. 9th Int. Conf. Learning Representations, 2021, pp. 1–15.

[107]

 S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Yamamoto,
“Distillation-based semi-supervised federated learning for
communication-efficient collaborative training with non-ⅡD private
data,” IEEE Trans. Mobile Comput., vol. 22, no. 1, pp. 191–205, Jan.
2023.

[108]

 C. Zhang, L. Zhu, D. Shi, J. Zheng, H. Chen, and B. Yu, “Semi-
supervised feature selection with soft label learning,” IEEE/CAA J.
Autom. Sinica, 2022. DOI: 10.1109/JAS.2022.106055

[109]

 V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, p. 15, Jul. 2009.

[110]

 S. Agrawal, S. Sarkar, O. Aouedi, G. Yenduri, K. Piamrat, M. Alazab,
S. Bhattacharya, P. K. R. Maddikunta, and T. R. Gadekallu, “Feder-
ated learning for intrusion detection system: Concepts, challenges and
future directions,” Comput. Commun., vol. 195, pp. 346–361, Nov.
2022.

[111]

 M. Schreyer, T. Sattarov, and D. Borth, “Federated and privacy-
preserving learning of accounting data in financial statement audits,”
in Proc. 3rd ACM Int. Conf. AI in Finance, New York, USA, 2022, pp.
105–113.

[112]

 A. Bemani and N. Björsell, “Aggregation strategy on federated
machine learning algorithm for collaborative predictive maintenance,”
Sensors, vol. 22, no. 16, p. 6252, Aug. 2022.

[113]

 C. Richards, S. Khemani, and F. Li, “Evaluation of various defense
techniques against targeted poisoning attacks in federated learning,” in
Proc. IEEE 19th Int. Conf. Mobile Ad Hoc Smart Syst., Denver, USA,
2022, pp. 693–698.

[114]

 S. Shi, C. Hu, D. Wang, Y. Zhu, and Z. Han, “Federated anomaly
analytics for local model poisoning attack,” IEEE J. Sel. Areas
Commun., vol. 40, no. 2, pp. 596–610, Feb. 2022.

[115]

 A. Rajput, “Natural language processing, sentiment analysis, and
clinical analytics,” in Innovation in Health Informatics: A Smart
Healthcare Primer, M. D. Lytras and A. Sarirete, Eds. Amsterdam,
Netherlands: Elsevier, 2020, pp. 79–97.

[116]

 B. Y. Lin, C. He, Z. Ze, H. Wang, Y. Hua, C. Dupuy, R. Gupta, M.
Soltanolkotabi, X. Ren, and S. Avestimehr, “FedNLP: Benchmarking
federated learning methods for natural language processing tasks,” in
Findings of the Association for Computational Linguistics, Seattle,
United States, 2022, pp. 157–175.

[117]

 M. Liu, S. Ho, M. Wang, L. Gao, Y. Jin, and H. Zhang, “Federated
learning meets natural language processing: A survey,” arXiv preprint
arXiv: 2107.12603, 2021.

[118]

 H. Yang, X. Li, and W. Pedrycz, “Learning from crowds with
contrastive representation,” IEEE Access, vol. 11, pp. 40182–40191,
Jan. 2023.

[119]

 C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on
federated learning,” Knowl.-Based Syst., vol. 216, p. 106775, Mar.
2021.

[120]

 P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G.
L. DÓliveira, H. Eichner, S. El Rouayheb, D. Evans, J. Gardner, Z.
Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z.
Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T.
Javidi, G. Joshi, M. Khodak, J. Konecnỳ, A. Korolova, F. Koushanfar,
S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür,
R. Pagh, H. Qi, D. Ramage, R. Raskar, M. Raykova, D. Song, W.
Song, S. U. Stich, Z. Sun, A. T. Suresh, F. Tramér, P. Vepakomma, J.
Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao,
“Advances and open problems in federated learning,” Found. Trends®

Mach. Learn., vol. 14, no. 1–2, pp. 1–210, Jun. 2021.

[121]

 K. Zhang, X. Song, C. Zhang, and S. Yu, “Challenges and future
directions of secure federated learning: A survey,” Front. Comput.
Sci., vol. 16, no. 5, p. 165817, Feb.–Dec. 2022.

[122]

 T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and A. S.
Avestimehr, “Federated learning for the internet of things:
Applications, challenges, and opportunities,” IEEE Internet Things
Mag., vol. 5, no. 1, pp. 24–29, Mar. 2022.

[123]

 N. Rodríguez-Barroso, D. Jiménez-López, M. V. Luzón, F. Herrera,
and E. Martínez-Cámara, “Survey on federated learning threats:
Concepts, taxonomy on attacks and defences, experimental study and
challenges,” Inf. Fusion, vol. 90, pp. 148–173, Feb. 2023.

[124]

 J. Wen, Z. Zhang, Y. Lan, Z. Cui, J. Cai, and W. Zhang, “A survey on
federated learning: Challenges and applications,” Int. J. Mach. Learn.
Cybern., vol. 14, no. 2, pp. 513–535, Feb. 2023.

[125]

 R. Al-Huthaifi, T. Li, W. Huang, J. Gu, and C. Li, “Federated learning
in smart cities: Privacy and security survey,” Inf. Sci., vol. 632,
pp. 833–857, Jun. 2023.

[126]

 Regulation (EU) 2022/868 of the European Parliament and of the
Council of 30 May 2022 on European data governance and amending
Regulation (EU) 2018/1724 (Data Governance Act) (Text with EEA
relevance), PE/85/2021/REV/1, 2022.

[127]

 Proposal for a Regulation of the European Parliament and of the
Council Laying down harmonised rules on Artificial Intelligence
(Artificial Intelligence Act) and amending certain Union Legislative
Acts, COM/2021/206 final, 2021.

[128]

 N. Díaz-Rodríguez, J. Del Ser, M. Coeckelbergh, M. López de Prado,
E. Herrera-Viedma, and F. Herrera, “Connecting the dots in
trustworthy artificial intelligence: From AI principles, ethics, and key
requirements to responsible AI systems and regulation,” Inf. Fusion,
vol. 99, no. C, p. 101896, Nov. 2023.

[129]

M. Victoria Luzón is currently a Full Professor in
the Software Engineering Department at the Univer-
sity of Granada, Spain. She is a Member of the
research group “Soft Computing and Intelligent Infor-
mation Systems” and of the Andalusian Interuniver-
sity Institute in Data Science and Computational
Intelligence (DaSCI Institute). She received the B.Sc.
degree in computer science from the University of
Granada in 1992. She received the Ph.D. degree in
industrial engineering from the University of Vigo in

2001. Her main research interests include sentiment analysis, natural lan-
guage processing and the study of novel learning techniques such as feder-
ated learning.

Nuria Rodríguez-Barroso received the B. Sc.
degrees in computer science and mathematics from
the University of Granada in 2018 and the M. Sc.
degree in computer science from the University of
Granada in 2019. Finally, he received the Ph.D.
degree in computer science from the University of
Granada in 2023. She is actually working as a Pos-
doc in the University of Granada. Her main research
interests include adversarial attacks and defences in
federated learning as well as other applications of

federated learning. She is also interested in natural language processing, senti-
ment analysis and trusworthy AI.

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 849

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

Alberto Argente-Garrido received the M.Sc. degree
in computer science from the University of Granada,
Spain, in 2018, where he is currently pursuing the
Ph.D. degree with the Department of Computer Sci-
ence and Artificial Intelligence. His current research
interests include federated learning, decision trees,
explainability and data science.

Daniel Jiménez-López is a Ph.D. candidate in the
University of Granada working in the development
of federated learning platforms in Python, as well as
in the development of techniques to safeguard the
privacy and integrity of deep learning models. Con-
sequently, differential privacy and federated learning
are him main research fields.

Jose M. Moyano received the Ph.D. degree in com-
puter science from the University of Córdoba (Spain)
and Virginia Commonwealth University (USA) in
2020. He is currently a Postdoctoral Researcher with
the Department of Computer Science and Artificial
Intelligence at the University of Granada. His rese-
arch interests include the development of multi-label
learning models, specifically based on ensembles, as
well as federated learning.

Javier Del Ser (Senior Member, IEEE) defended the
first doctoral thesis (Cum Laude) in control engineer-
ing and industrial electronics at the University of
Navarra (2006), and the second doctoral thesis in
information and communication technologies (also
Cum Laude and awarded the Extraordinary PhD
Award) at the University of Alcala de Henares
(2013). He is a Research Professor in artificial intelli-
gence at TECNALIA RESEARCH & INNOVA-
TION, and an Adjunct Professor at the Department

of Communications Engineering of the University of the Basque Country
(UPV/EHU). He is also a distinguished Professor at the University of Granada
(Spain). His research interests are in artificial intelligence, machine learning
and deep learning applied to practical modeling and optimization tasks for
problems arising from different sectors, including industry, health, telecom-
munications, transportation, energy, and mobility, among others. He has
authored more than 430 scientific contributions to date, including 180 JCR-
indexed journal articles. He has supervised 16 doctoral theses and partici-
pated in more than 50 projects and contracts. He has been listed within the top
2% most influential AI researchers worldwide by the Stanford University and

has also been part of the team that developed the R&D strategy in Artificial
Intelligence for the Government of Spain in 2019.

Weiping Ding (Senior Member, IEEE) received the
Ph.D. degree in computer science from Nanjing Uni-
versity of Aeronautics and Astronautics, in 2013.
From 2014 to 2015, he is a Postdoctoral Researcher
at the Brain Research Center, National Chiao Tung
University, Hsinchu, Taiwan, China. In 2016, He
was a Visiting Scholar at National University of Sin-
gapore, Singapore. From 2017 to 2018, he was a Vis-
iting Professor at University of Technology Sydney,
Australia. He is a Full Professor with the School of

Information Science and Technology, Nantong University, and also the
Supervisor of Ph.D postgraduate by the Faculty of Data Science at City Uni-
versity of Macau, China. His main research directions involve deep neural
networks, multimodal machine learning, and medical images analysis. He
ranked within the top 2% Ranking of Scientists in the World by Stanford Uni-
versity (2020–2023). He has published over 250 articles, including over 100
IEEE Transactions papers. His eighteen authored/co-authored papers have
been selected as ESI Highly Cited Papers. He has co-authored four books. He
has holds 28 approved invention patents, including two U.S. patents and one
Australian patent. He serves as an Associate Editor/Editorial Board member
of IEEE Transactions on Neural Networks and Learning Systems, IEEE
Transactions on Fuzzy Systems, IEEE/CAA Journal of Automatica Sinica,
IEEE Transactions on Intelligent Transportation Systems, IEEE Transactions
on Intelligent Vehicles, IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, IEEE Transactions on Artificial Intelligence, Information
Fusion, Information Sciences, Neurocomputing, Applied Soft Computing. He
is the Leading Guest Editor of Special Issues in several prestigious journals,
including IEEE Transactions on Evolutionary Computation, IEEE Transac-
tions on Fuzzy Systems, and Information Fusion. Now he is the Co-Editor-in-
Chief of both Journal of Artificial Intelligence and Systems and Journal of
Artificial Intelligence Advances.

Francisco Herrera (Senior Member, IEEE) received
the M.Sc. degree in mathematics in 1988, and the
Ph.D. degree in mathematics in 1991, both from the
University of Granada, Spain. He is a Professor in
the Department of Computer Science and Artificial
Intelligence at the University of Granada and Direc-
tor of the Andalusian Research Institute in Data Sci-
ence and Computational Intelligence (DaSCI). He’s
an Academician in the Royal Academy of Engineer-
ing (Spain). He has been the Supervisor over 60

Ph.D. students. He has published more than 600 journal papers, receiving
more than 144 000 citations (Scholar Google, H-index 179). He has been
nominated as a Highly Cited Researcher (in the fields of computer science
and engineering, respectively, 2014 to present, Clarivate Analytics). He acts
as Editorial Member of a dozen of journals. His current research interests
include among others, computational intelligence, information fusion and
decision making, trustworthy artificial intelligence and data science (includ-
ing data preprocessing, prediction and big data).

 850 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 4, APRIL 2024

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore. Restrictions apply.

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com

