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   Abstract—When data privacy is imposed as a necessity, Feder-
ated learning (FL) emerges as a relevant artificial intelligence field
for  developing  machine  learning  (ML)  models  in  a  distributed
and  decentralized  environment.  FL  allows  ML  models  to  be
trained  on  local  devices  without  any  need  for  centralized  data
transfer, thereby reducing both the exposure of sensitive data and
the possibility of data interception by malicious third parties. This
paradigm has gained momentum in the last few years, spurred by
the  plethora  of  real-world  applications  that  have  leveraged  its
ability  to  improve  the  efficiency  of  distributed  learning  and  to
accommodate numerous participants with their data sources.  By
virtue of FL, models can be learned from all such distributed data
sources while preserving data privacy. The aim of this paper is to
provide a practical tutorial on FL, including a short methodology
and  a  systematic  analysis  of  existing  software  frameworks.  Fur-
thermore,  our  tutorial  provides  exemplary  cases  of  study  from

three complementary perspectives: i) Foundations of FL, describ-
ing  the  main  components  of  FL,  from  key  elements  to  FL  cate-
gories;  ii) Implementation  guidelines  and  exemplary  cases  of
study, by systematically examining the functionalities provided by
existing  software  frameworks  for  FL  deployment,  devising  a
methodology  to  design  a  FL  scenario,  and  providing  exemplary
cases of study with source code for different ML approaches; and
iii) Trends,  shortly  reviewing  a  non-exhaustive  list  of  research
directions  that  are  under  active  investigation  in  the  current  FL
landscape. The ultimate purpose of this work is to establish itself
as a referential work for researchers, developers, and data scien-
tists willing to explore the capabilities of FL in practical applica-
tions.
    Index Terms—Data  privacy,  distributed  machine  learning,  feder-
ated learning, software frameworks.
  

I.  Introduction

D EEP  learning  has  revolutionized  the  field  of  artificial
intelligence (AI) by enabling machines to learn and make

decisions like humans through data-driven techniques [1]. The
development of high-speed networks such as 5G and advances
in  edge  computing  have  supported  the  development  of  hard-
ware and models capable of processing large amounts of data
collected from multiple devices. Consequently, privacy aware-
ness has become a major design driver, shifting the focus from
centralized machine learning (ML) to distributed ML. Still, in
distributed  ML  the  communication  costs  far  outweigh  the
compute costs, making the training process inefficient [2]. FL
[3], [4] was conceived to address these issues. In essence, FL
is a distributed learning paradigm that enables model learning
from decentralized  data,  without  the  need  for  collecting  data
on  a  central  server.  Since  local  data  never  leaves  the  device
where it was collected, data privacy is guaranteed.

FL  has  gained  significant  attention  due  to  its  ability  to
address  privacy  concerns  and  improve  the  efficiency  of  dis-
tributed learning [5]–[7]. Additionally, it is highly scalable as
it  can  accommodate  numerous  participants,  each  with  their
data sources. This can be particularly useful in scenarios with
continuous data generation, e.g., Internet of Things (IoT) sen-
sor devices. As a result, FL has become an important AI field,
attracting the interest of researchers, developers, and data sci-
entists in the ML community in theoretical and practical stud-
ies  involving  applications  that  deal  with  sensitive  data.  The
first successful application of FL was developed by Google to
predict  user’s  text  input  within  tens  of  thousands  of  Android
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devices, while keeping data locally on devices [3]. Since then,
FL has been applied to a wide range of applications in diverse
fields,  from  industrial  engineering  to  healthcare [8].  It  has
been  also  explored  for  drug  discovery  from  biological  and
chemical data in real-world cross-national settings [9].

In  this  context,  we  can  find  many  overviews  and  general
studies on FL, mostly from a scientific perspective. However,
the  literature  lacks  a  tutorial  on  FL  that  considers  essential
aspects for the understanding, analysis and use of this research
area  with  a  complete  view  from  theory  to  practice.  We  pro-
vide  the  following  elements:  a  revision  of  the  key  elements,
architectures, and categories defined in FL; a design method-
ology;  a  systematic  analysis  of  software  frameworks  from  a
practical  perspective,  along with cases of study; and research
trends for a double perspective of FL components versus ML
approaches.  This  is  indeed  the  goal  of  this  tutorial  paper:  to
provide  a  valuable  source  of  information  for  anyone  inter-
ested in learning about  this  cutting-edge research area and in
applying it to real-world problems. Specifically, the contribu-
tions  of  this  tutorial  articulate  around  three  different  axis  or
perspectives:

1)  We  present  a  clear  insight  into  the  FL  field,  discussing
the foundations, ranging from the description of its main com-
ponents, from key components to architectures and categories.

2)  We  provide  a  practical  perspective,  including  a  short
methodology,  the  software  frameworks  analysis  and  exem-
plary  cases  of  study.  First,  we  provide  a  methodology  to
design a FL scenario and experiments. Second, we provide an
analysis  of  the  functionalities  provided  by  software  frame-
works for FL deployment, and show the maturity of the field,
thorough  the  simplicity  and  immediacy  of  assembling  a  FL
architecture with these frameworks. Third, we provide exem-
plary  cases  of  study  with  source  code  for  different  ML
approaches, such as image classification and sentiment analy-
sis (SA) focused on the data, decision trees in vertical FL from
a model analysis focused on interpretability, clustering as non-
supervised  learning,  and  differential  privacy  (DP)  as  an
approach  to  preserve  data  integrity  and  privacy.  This  collec-
tion  of  cases  of  study aims to  give  a  broad practical  view of
the  possibilities  of  FL,  including  the  availability  of  the  code
used for them.

3) We analyze the state of the art and prospects of the field,
providing  a  non-exhaustive  review  of  trends  under  a  double
prism: i) Trends that are inherent to FL; and ii) Trends in fed-
erated ML. The selected trends include attacks and defenses in
FL,  personalized  FL,  federated  transfer  learning,  and  ML
tasks such as semi-supervised FL, anomaly detection,  natural
language processing (NLP) or SA.

According to these aims, the paper is organized as follows.
Section II  introduces  the  concept  of  FL considering 3  funda-
mental  questions: Why? What? and What  for? Section  III
explores  the  foundations,  introducing  the  principal  compo-
nents needed to fully understand the foundations of FL, from
key elements to architectures and categories, with a short view
of techniques to ensure the data privacy. Section IV examines
an  ecosystem  available  in  federated  scenarios,  focusing  on
federated  datasets  and  a  wide  range  of  software  frameworks.
Section V describes the methodology for designing a FL sce-

nario,  depicting  a  method  to  put  into  practice  the  theoretical
concepts  introduced  previously.  Section  VI  provides  a  com-
parison  between  FL  and  non-FL  scenarios.  Section  VII  dis-
cusses different use cases and methods to solve them by using
three  different  software  frameworks  selected  from  the  study
conducted in the previous section. Section VIII elaborates on
the selected FL trends. Section IX concludes this tutorial with
a summary and outlook. Finally, we include Appendix which
shows a list of abbreviations and notations.  

II.  Federated Learning: Why, What and What for?

Data-driven  ML  has  mastered  the  AI  field [10].  Unfortu-
nately, increasing demands in terms of data volume and vari-
ety have resulted in several challenges related to data privacy
and  the  processing  of  such  large  amounts  of  data.  Among
them,  the  main  ML  challenges  from  which  FL  emerges  are
associated  with  privacy,  communication,  and  data  access,
which are next discussed shortly:

● Data Privacy: In centralized ML, users’ data is often col-
lected and stored in a central server, where it can be vulnera-
ble to privacy breaches [11]. This is particularly concerning in
some fields such as healthcare [12], finance, and other indus-
tries  where  data  privacy  is  of  utmost  priority.  Moreover,
growing  concerns  about  safeguarding  of  data-privacy  mani-
fests  in  the  legal  area  with,  for  example,  recently  published
recommendations [13]. Consequently, the development of pri-
vacy-preserving  AI  methods  is  in  urgent  demand  in  such
fields.

● Communication  Costs  and  Latency [14]: In  centralized
ML, the raw data is often transmitted to a central server to be
processed  and  used  to  train  ML  models [15].  This  informa-
tion  exchange  can  be  costly  and  time-consuming,  especially
when  dealing  with  large  datasets [16].  Furthermore,  the
increasing  amount  of  data  available  due  to  the  explosion  of
IoT sensors [17] and the proliferation of edge devices generat-
ing vast amounts of data poses a new challenge related to the
storage  and  preprocessing  of  data  continuously  flowing from
different sources.

● Limitations in Data Access [12]: In some cases, data can
be  distributed  across  different  institutions  or  organizations,
making  it  difficult  to  access  or  share  data  between  them  or
with others.

{C1,
C2, . . . ,Cn}

In order to address the above challenges, FL [4] emerges as
a distributed ML paradigm aimed at  developing a ML model
without explicitly sharing any data between any of the partici-
pants.  It  involves  a  network  of  clients  or  data  owners 

, which takes part in two primary phases:
1) Model  training  phase,  in  which  each  data  owner

exchanges  information  without  revealing  any  of  their  data  to
collaboratively train a ML model. For that purpose, each data
owner trains a local learning model on its data and shares this
learning  model’s  information  instead  of  their  training  data.
Then,  the  trained  local  models  are  aggregated  to  create  a
trained global learning model (see Fig. 1).

2) Inference  phase,  where  the  trained  global  model  is
applied to new data instances.

These processes can be either synchronous or asynchronous,
depending  on  the  data  availability  of  nodes  and  the  trained
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model. It is important to note that privacy is not the only rea-
son for this approach, as there should also be a fair value-dis-
tribution mechanism in place to share the profits gained by the
collaboratively trained model.

{C1, . . . ,Cn}
{D1, . . . ,Dn} Ci

Li {L1, . . . ,
Ln} G

t
Dt

i
Lt

i L̂t
i Gt

{L̂t
1, . . . , L̂

t
n}

∆

Once we have described FL as a general concept, a FL sce-
nario  can  be  formally  posed  as  follows.  We  assume  a  set  of
clients  or  data  owners  with  their  respective  local
training  data .  Each  of  these  clients  owns  a
local  learning  model  expressed  as  the  parameters 

.  FL  aims  to  learn  a  global  learning  model ,  using  scat-
tered data across clients through an iterative learning process
known as round of  learning.  For  that  purpose,  in  each learn-
ing round ,  each client trains its  local  model over their  local
training  data ,  resulting  in  the  update  of  the  local  parame-
ters  to .  Thereafter,  the  global  parameters  are  com-
puted by aggregating the trained local  parameters 
using a fixed federated aggregation operator ,  and the local
learning models are updated with the aggregated parameters
 

Gt = ∆(L̂t
1, L̂

t
2, . . . , L̂

t
n)

Lt+1
i ←Gt, ∀i ∈ {1, . . . ,n}. (1)

Updates  among  the  clients  and  the  server  are  repeated  for
the  learning  process  until  a  given  stop  criteria  is  met.  Thus,
the  final  value  of G will  sum up  the  knowledge  modelled  in
the clients.

Finally,  we  pause  at  the  question What  for? The  design  of
this  distributed  learning  paradigm allows  for  training  models
on data that is not easily collectable or centralized, providing a
solution to the problems addressed before because of the fol-
lowing features:

● Data Privacy: FL addresses this leakage by allowing the
model to be trained on the data where it  is allocated, without
sharing  any  information  about  data  to  a  central  server.  This
way,  sensitive  data  remains  on  users’ devices  and  is  never
shared, thus preserving users’ privacy.

● Communication  Costs  and  Latency: FL  addresses  this
challenge  by  allowing  only  model  updates  to  be  exchanged

between  the  server  and  the  clients.  This  approach  addresses
the  latency  and  high  bandwidth  issues  present  in  other  dis-
tributed  training  processes,  where  the  training  algorithm  is
modified  to  support  distributed  computations  and  the  data  is
downloaded  from  a  central  data  provider  or  data  silo [18].
Consequently, FL is more efficient and scales better than tra-
ditional distributed ML strategies.

● Data Access: FL solves this challenge by enabling collab-
orative ML across different institutions or organizations, with-
out requiring them to share any data [19]. FL effectively over-
comes the requirement of a central data provider and enables
applications  of  ML  in  various  domains  that  are  sensitive  to
data  privacy,  promoting  collaboration  and  innovation  in  the
field.

FL  is  driven  by  the  challenges  of  privacy,  communication
costs,  and data access limitations that  are inherent  in central-
ized ML. It offers a promising approach for training ML mod-
els  on  decentralized  data,  while  addressing  these  challenges
and enabling new applications of ML in various domains [8].
The  healthcare  domain  has  greatly  leveraged  the  use  of  FL
thorough the development of the so-called Internet of Health-
care  Things  (IoHT),  which  allows  knowledge  from  different
sources  to  be  combined  in  order  to  better  determine  patient
health  status  and  identify  possible  anticipatory  actions [20],
[21]. An interesting use case of FL within the IoHT context is
medical imaging for COVID-19 detection [22]. Moreover, the
industrial  engineering  domain  has  found  multiple  successful
applications  of  FL  such  as  detecting  defects  in  production
tasks [23] or  malicious  attacks  detection  in  communication
systems supported by unmanned aerial vehicles [24].

It  is  worth  emphasizing  that  FL  can  be  utilized  in  several
ways, for instance, it can depend on the roles or the nature of
the  data  of  each  of  the  nodes  involved.  All  these  aspects  are
covered in Section III.  

III.  Federated Learning Foundations: Key Elements,
Architectures, Categories and Data Privacy

In this section, we explore the principal components needed
to  fully  understand  the  FL  foundations.  In  the  following,  we
introduce  the  principal  workflow  and  key  elements  of  FL  in
Section  III-A  (discussing  the  local  training,  communication,
model aggregation and local models update), to continue with
multiple  FL  architectures  (client-server  and  peer-to-peer)  in
Section  III-B.  Then,  we  introduce  the  main  FL  categories
according to different criteria in Section III-C (based on data
features, labels and sample space). Finally, we briefly discuss
the most used techniques to ensure the data privacy in Section
III-D.  

A.  Workflow and Key Elements in Federated Learning
Once  FL  has  been  briefly  introduced,  we  can  move  on  to

talk  about  the  main  workflow  of  a  FL  process.  In Fig. 2 we
show the different steps that compose FL training. In the fol-
lowing, we further explain the steps of the workflow and spec-
ify the key elements [25] which arise from each of the steps.

a) Local Training: It starts with the local training of each of
the local ML models by each of the data owner nodes. Gener-
ally,  all  these  locally  trained  learning  models  have  a  shared

 

Aggregation

Hospital A

Hospital B

Hospital C
ℓ̂

ℓ̂

ℓ̂

 
Fig. 1.     Generic  FL  medical  use  case,  where  Magnetic  Resonance  Image
data is collected at three different hospitals and modelled locally for a clinical
diagnostic application. Model updates are uploaded to a central server (→, →,
→)  and  aggregated  to  yield  a  trained  global  model,  which  is  then  delivered
downstream (--→) to the hospitals and combined with their local models. As
a  result,  the  combined  local  model  leverages  knowledge  modelled  by  other
hospital for the same clinical task, while keeping local data private.
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architecture.  However,  all  the  aspects  concerning  training
hyperparameters (such as number of epochs, batch size, learn-
ing  rate)  may  differ  among  clients.  In  this  step,  the  first  key
elements appear naturally:

● Decentralized  Data: Data  is  distributed  among  different
devices  or nodes,  instead  of  being  in  a  centralized  location,
which  is  beneficial  when  the  data  privacy  and  security  are  a
concern.  Moreover,  such  data  is  inaccessible  and  not  shared
with  any  third-party.  The  data  distribution  across  the  clients
can be:

1) Homogeneous or independent and identically distributed
(IID): It assumes that the data distribution across the clients is
IID, which means that the data of each client follows the same
underlying data distribution.

2)  Heterogeneous  or  non  independent  and  identically  dis-
tributed (non-IID): It assumes that the data distribution across
the clients is non-IID, that is, the data of each client follows a
different  data  distribution.  Formally,  we  can  distinguish
between three types of data distribution heterogeneity [26]: i)
Where the feature space of the clients’ data are different,  but
they share the same goal;  ii)  Where the input  space is  analo-
gous, but there are differences in the label space according to
the  data;  and  iii)  When there  are  differences  in  both  the  fea-
ture and label spaces.

● Learning  Model: The  training  of  the  learning  model  is
performed  on  the  decentralized  data,  where  each  device  or
node  trains  its  model  and  contributes  to  the  training  process,
sharing  the  weights  of  its  local  learning  model.  It  also
improves the model  due to a better  generalization,  given that
the model can learn from a broader range of data.

● Clients: These nodes store data and train models, and are
usually referred to as clients (see Section III-B).

b) Communication: After local training, the communication
enables  the  coordination  and  aggregation  of  model  updates
generated  by  the  participating  nodes,  allowing  the  decentral-
ized training. It plays a crucial role in the protection of the pri-
vacy  and  security  of  the  data  when  paired  with  data  security
techniques  like  (DP)  or  (SMC).  We  highlight  the  following
key elements from this step:

● Communication  Schedule: The  communication  can  be
both synchronous and asynchronous, depending on the config-
uration.  There  may  also  be  a  central  server  that  handles  the
collection of all  local  models,  or  it  may be distributed across
multiple nodes in the network.

● Privacy  Protocols: Although  no  training  data  is  shared
during FL communications, the information shared is suscep-
tible to privacy leaks or corrupting the entire learning process
[27]. Hence, communications are one of the weak points of FL
regarding  susceptibility  to  attacks.  For  this  reason,  it  is  usu-
ally  combined  with  other  privacy  mechanisms  (see  Section
III-D).

c) Aggregation: The local model updates generated by each
node are combined by means of a specific aggregation opera-
tor and the result is incorporated to update and create a trained
global  learning  model.  The  key  element  in  this  step  is  the
aggregation  mechanism,  which  depends  on  the  task  address-
ed.  However,  the  most  common  one  is Federated  Averaging
(FedAvg) [14] when the ML model can be expressed as a vec-
tor of weights. Otherwise, as in clustering, for example, a spe-
cific aggregator must be designed to combine the information
from each node.

d) Local Update: The last step consists of updating the local
models  stored  in  the  different  nodes  with  the  new  global
model.  The  simplest  case  is  to  update  all  local  models  with
this  new  global  model.  However,  there  are  different  update
strategies that consist of combining the local and global mod-
els  rather  than replacing them directly.  These  approaches  are
used to achieve features such as personalization of the clients
to their local data.  

B.  Federated Learning Architectures
The combination of the key elements generates multiple FL

architectures,  that  defines  their  interrelationship [4],  both
client-server and peer-to-peer:

● Client-server  architecture.  There  is  a  manager  node
responsible  for  the  coordination  and  aggregation  of  model
updates  named  the server and  the  rest  of  nodes  which  own
data and are responsible for training their local models named
the clients.  This  is  easy  to  implement,  but  it  requires  a  high
level of trust in the server. This degree of reliance is its main
weakness, as a result it is vulnerable to attacks. We represent
this architecture in Fig. 3.

 
Model update Model update

Server
Communication

(Model A)
Model
update

Communication
(Model B)

Communication
(Model C)

Client A Client B Client C
 
Fig. 3.     Representation of client-server FL architecture with 3 clients.
 

● Peer-to-peer  architecture.  All  the  nodes  own  both  the
training  data  and  aggregate  model  updates  of  other  nodes.  It
doesn’t require any fixed coordinator of the learning process.
This  is  complex  to  implement,  and  the  communication  costs
increase,  but  the  main  advantages  are  an  elevated  level  of
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Fig. 2.     Block diagram of the FL workflow.
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security  and  data  privacy.  We  represent  this  architecture  in
Fig. 4.
 

Node A Node B
Model

update A
Local

training Local
training

Model
update B

Aggregation strategy A Aggregation strategy B

 
Fig. 4.     Representation of peer-to-peer FL architecture.
 

To the best of our knowledge, the client-server architecture
is the most common in FL; consequently we will refer to it as
the default architecture when FL is being discussed.  

C.  Federated Learning Categories
There are several categories of FL according to properties of

the key elements. We consider the following properties of the
decentralized data key element to be the ones that generate the
most relevant FL categories:

Data  Feature,  Label  and  Sample  Space: The  decentralized
nature  of  FL  may  induce  bias  and  heterogeneity  in  the  local
data  distribution  due  to  different  circumstances  and  factors,
such  as  cultural,  ethnic  or  age  differences  between  the  users
generating  such  data.  Based  on  the  dimension  in  which  the
data is partitioned across clients, there are different categories
[4]. We define the following categories in terms of the feature
space (X), the label space (Y) and the sample space (I) as fol-
lows:

● Horizontal Federated Learning (HFL): When data is par-
titioned across clients based on the samples, which means that
each  client  owns  different  samples  of  the  overall  training
dataset. Formally, we can define it as
 

Xi = X j, Yi = Y j, Ii , I j, ∀Di,D j, i , j (2)
(i, j)

(Xi,Yi) (X j,Y j)
Ii I j Di D j

where  the  feature  and  label  space  of  the  clients  is
depicted  by  and  and  it  is  assumed  to  be  the
same, while the samples  and  are not the same.  and 
depict the data of the clients i and j. It is suitable for training
models on data collected from numerous similar devices, such
as smartphones or IoT devices.

● Vertical  Federated  Learning  (VFL): When  data  is  parti-
tioned across clients  based on the features,  which means that
each client owns the same set of samples, but a different set of
features. Formally, we can define it as
 

Xi , X j, Yi , Y j, Ii = I j, ∀Di,D j, i , j. (3)
It  is  suitable  for  training  models  on  data  collected  for  a

small  number  of  devices  with  different  feature  space.  For
example, it can be used to predict medical outcomes based on
data  collected  from  multiple  hospitals,  where  each  hospital
has a different set of medical records.

● Federated Transfer Learning (FTL): When knowledge is
transferred  across  multiple  domains  without  any  overlap
between samples or  features [28].  Formally,  we can define it
as 

Xi , X j, Yi , Y j, Ii , I j, ∀Di,D j, i , j. (4)
In this architecture, it is not assumed that the distribution of

training and test data are the same and they are defined in the
same  feature  space.  It  is  usually  used  in  combination  with
fine-tuning  techniques  over  large  models  pretrained  using  a
centralized dataset.

Fig. 5 represents  the  differences  between  HFL,  VFL  and
FTL according to the data and its features shared between dif-
ferent clients.
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Fig. 5.     Representation of HFL, VFL and FTL categories in a client-server
FL [4].
   

D.  Data Privacy: Advanced Approaches
FL  is  built  with  privacy  in  mind,  that  is,  clients’ data

remains  private  across  the  FL model  training.  However,  it  is
possible  to  break  such  privacy  guarantees  through  the
exchanged models during the learning process, as local client
models are prone to memorization of their training dataset. A
malicious  node  can  try  to  recover  some  part  of  the  private
training dataset from other clients, inducing a privacy leakage.
Therefore, data privacy techniques are required to enhance the
privacy  guarantees  of  a  FL  model.  We  consider  that  these
techniques  can  be  deployed  in  multiple  elements  of  the  FL
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architecture, which we will elaborate on in the following short
sections,  considering  SMC & homomorphic  encryption  (HE)
and DP.

1) Secure Multiparty Computation & Homomorphic Encry-
ption: SMC  is  aimed  at  securing  the  communications  in  the
FL  rounds,  mainly  focusing  on  the  aggregation  procedure.
Communication channels are kept safe through HE [29]. SMC
often employs HE as a tool to ensure that there are no agents
manipulating  the  communication  protocols  to  either  com-
pletely deny the communication process or intercept the mod-
els exchanged. SMC mostly focuses on computing the aggre-
gation so that  sensitive data such as parameters  are kept  hid-
den to FL nodes that manipulate them [30]. While these tech-
niques  avoid  external  or  internal  inference  in  the  FL  rounds,
the resulting FL model is still vulnerable to attacks that extract
information from the aggregated model itself [27]. This moti-
vates  the  usage  of  data  privacy  techniques  that  modify  the
learning  process  to  ensure  the  aggregated  FL  model  is  pro-
tected as well as the individual clients’ models are.

2)  Differential  Privacy: DP  is  a  data  privacy  enhancing
technique  aimed  at  ensuring  the  indistinguishability  of  the
data used, that is, it hides the presence of individuals. This is
achieved through the addition of calibrated random noise [31].
When applied to  FL,  DP can be deployed at  two stages  with
diverse  privacy  guarantees:  a)  locally  training  the  FL  model
with  DP  at  the  client,  known  as  local  differential  privacy
(LDP) [32], and b) at the aggregation step creating a differen-
tially private version of FedAvg, known as central differential
privacy (CDP).  LDP provides indistinguishability  for  clients’
data,  providing the  strongest  privacy guarantee  at  the  cost  of
reduced performance, and CDP ensures indistinguishability in
determining  whether  a  client  participates  in  the  aggregation
step  or  not,  providing  a  weaker  privacy  guarantee  that
improves the performance of the FL model when compared to
LDP [33]. There are also some SMC and HE frameworks that
integrate DP in their procedures [34].

Overall,  data  privacy  needs  to  be  enhanced  in  FL  tasks.

Nevertheless, enhanced data privacy often comes at the cost of
worse  FL  model  performance,  a  trade-off  that  should  be
adjusted to each FL scenario.  

IV.  Federated Datasets and State-of-the-Art
Software Frameworks

This  section  introduces  the  ecosystem  available  to  design
models  and  studies  in  federated  scenarios.  First,  the  most
widely  used  datasets  in  the  literature  to  perform  FL  experi-
ments are presented (see Section IV-A); later, a wide range of
state-of-the-art  software frameworks for  designing such stud-
ies,  are  analyzed  from  different  multiple  angles  (see  Section
IV-B).  

A.  Federated Datasets
Datasets from traditional centralized ML tasks can be reused

for  simulation  purposes  by  artificially  partitioning  and  shar-
ing  the  data  between  the  different  parties  to  fit  the  federated
scenario.  Nevertheless,  there  are  also  some  widely  used
datasets  that  are considered inherently federated by their  fea-
tures  or  data  distribution.  In  this  regard,  it  is  noteworthy  to
mention  LEAF [35],  a  benchmarking  framework  that  pro-
vides  several  federated  datasets,  and  TensorFlow  Federated
(TFF) [36] which also implements some federated datasets.

Table I shows  a  summary  of  the  most  common  federated
datasets in the literature, including CelebA1,  Cifar1002,  Fash-
ion MNIST3,  FEMNISTIV-A,  Google  landmark v2IV-A,  iNatu-
ralistIV-A, MedMNIST4, MNIST5, ShakespeareIV-A, RedditIV-A,
Stack OverflowIV-A, Sentiment140IV-A, Adult6, and Credit27.

The datasets in the table cover different tasks such as com-
puter  vision,  NLP,  and  traditional  tabular  classification,  as

 

TABLE I 

Datasets for Benchmarking Federated Scenarios. The Fed. Dist. Column Indicates if the Distribution of the Dataset is
Inherently Federated. The Refs. Column Indicates Studies Where the Dataset Has Been Used

Dataset Task #Instances #Clients Fed. dist. Category Refs.

CelebA Image classification 200 288 9343 Yes HFL [37], [38], [39]

Cifar100 Image classification 60 000 − No HFL [40], [41], [42]

Fashion MNIST Image classification 70 000 − No HFL [43], [44], [45]

FEMNIST Image classification 805 263 3550 Yes HFL [40], [45], [46]

Google landmark v2 Image classification 164 172 1262 Yes HFL [47], [48], [49]

iNaturalist Image classification 155 941 9275 Yes HFL [47], [50], [51]

MedMNIST Image classification 708 069 − No HFL [52], [53], [54]

MNIST Image classification 70 000 − No HFL [43], [44], [46]

Shakespeare Text prediction 4 226 150 1129 Yes HFL [41], [50], [55]

Reddit Text prediction 56 587 343 1 660 820 Yes HFL [56], [57], [58]

Stack Overflow Text prediction 168 895 995 585 323 Yes HFL [41], [55], [59]

Sentiment140 SA 1 600 498 660 120 Yes HFL [40], [46], [50]

Adult Classification 48 842 − No VFL [60], [61], [62]

Credit2 Classification 30 000 − No VFL /FTL [63], [64], [65]
 

  
1 https://leaf.cmu.edu/
  
2 https://www.tensorflow.org/federated/apidocs/python/tff/simulation/datasets
  
3 https://www.kaggle.com/datasets/zalando-research/fashionmnist
  
4 https://medmnist.com/
  
5 http://yann.lecun.com/exdb/mnist/
  
6 https://archive.ics.uci.edu/ml/datasets/adult
  
7 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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well  as  different  federated  scenarios  such  as  HFL,  VFL,  and
FTL. Note that for both VFL and FTL, the most widely used
datasets  are  artificially  partitioned  but  not  inherently  feder-
ated. Besides, the table includes the total number of instances
in the dataset and the predefined number of clients in the fed-
erated scenario (in those cases where the dataset distribution is
inherently federated). These datasets have been used in a sub-
stantial  number  of  studies  (whose  references  are  included  in
the last column of the table).  

B.  State-of-the-Art Frameworks for Federated Learning
When  developing  experiments  for  a  federated  scenario,

there are multiple frameworks designed for doing it. We have
searched  for  state-of-the-art  open-source  frameworks  avail-
able  and  selected  some  important  aspects  of  FL  to  check
whether  these  frameworks  fulfill  each  aspect  or  not. Table II
shows the reviewed frameworks and whether they fulfill those
important aspects in FL8. This table may help the users select
the  framework  to  use  for  their  experiments  with  FL.  Due  to
space limitations because of the large number of frameworks,
the names of the different frameworks have been shortened in
the  table.  The  frameworks  reviewed  are:  PySyft  (PyS),  Ten-
sorFlow  Federated  TFF,  FATE  (FAT),  PaddleFL  (Pad),
Flower  (Flo),  Xaynet  (Xay),  IBM  FL  (IBM),  Substra  (Sub),
OpenFL (OFL), FedML (FML), FedJax (FJx), Backdoors 101
(101),  FedLab (FLb),  SimFL (SFL),  easyFL (EFL),  TorchFL

(TFL), APPFL (AFL), NVFlare (NVF).
a)  Degrees  of  Compliance  of  Each  Framework: Three

degrees  of  compliance  have  been  considered  depending  on
whether  an  aspect  is  supported  by  a  framework  or  not.  The
green  dots  indicate  that  this  aspect  is  fully  supported  by  the
framework.  The  orange  ones  indicate  that  the  aspect  is  par-
tially covered in the framework, i.e., it covers some cases but
not all.  Finally,  the red dots mean that this aspect is  not sup-
ported in  the framework.  Additionally,  the grey dots  indicate
that  we were unable to determine exactly whether the frame-
work supports an aspect.

b)  FL  Aspects  Covered  by  Each  Framework: The  table  is
horizontally  partitioned  into  four  groups.  First,  the  main
aspects  of  FL  are  checked,  indicating  whether  or  not  the
frameworks support the execution of HFL, VFL, or FTL algo-
rithms, if they support common ML frameworks such as Ten-
sorFlow,  PyTorch,  or  Scikit-Learn,  if  they  support  IID  and
non-IID  data  sampling,  and  if  they  include  a  wide  range  of
federated aggregation mechanisms that have been proposed in
the literature. Finally, the fourth group checks other advanced
properties  of  the  frameworks,  such  as  the  interpretability  of
their  models,  if  they  support  model  personalization  on  the
client side, if they provide comprehensive documentation or a
high-level API, their ability to extend the framework with new
properties  customized  by  the  user,  and  if  they  are  actively
maintained.  

 

TABLE II 

State-of-the-Art Software Frameworks for FL ( : Full Support; : Partial Support; : No Support; −: Undetermined)

PyS TFF FAT Pad Flo Xay IBM Sub OFL FML FJx 101 FLb SFL EFL TFL AFL NVF

　Federated Learning:

　　Horizontal Federated Learning

　　Vertical Federated Learning

　　Federated Transfer Learning

　　Support other ML frameworks

　　Sampling IID or non-IID distribution −

　　Federated aggregation mechanisms −

　Adversarial Attacks in FL:

　　Privacy attacks

　　Defenses against Privacy attacks

　　Attacks to the federated model

　　Defenses against attacks to the model

　Differential Privacy (DP):

　　Mechanisms: Exponential, Laplacian...

　　Subsampling methods to increase privacy

　　Advanced (DP) Composition

　Advanced Properties:

　　Interpretability / Explainability

　　Personalization

　　Documentation and tutorials

　　High-level API −

　　Ability to extend the framework − − − −
　　Actively maintained
 

  
8 The information in the table is updated as of January 2023.
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V.  Methodology for Designing A Simulated
Federated Learning Scenario

In previous sections, the foundations of FL and the charac-
teristics  of  existing  datasets  and  frameworks  have  been
reviewed and analyzed. Provided that FL experimentation has
a major handicap in that there are no truly federated datasets,
i.e.,  datasets  that  are  hosted  on  different  devices,  in  this  sec-
tion we provide methodological  guidelines  for  simulating FL
scenarios.  We  stress  that,  what  we  do  are  simulations,  in
which during experimentation we simulate clients that do not
access  each  other’s  data.  In  some  situations,  this  simulation
may  be  closer  to  reality  in  the  sense  that  the  data  may  have
been  collected  from  different  sources,  thus  distributing  it  by
identifying each of these sources with a client in the federated
schema.

Fig. 6 shows  a  workflow  with  the  main  steps  to  follow  to
design  a  FL  scenario  and  experiments.  We  pay  attention  to
various aspects:  the problem to face and its  data distribution,
the  model  selection,  the  training  strategy,  and  evaluation
methodologies.

a) Federated Learning Scenario, Problem and Data Distri-
bution: The  first  step  is  to  analyze  the  problem at  hand,  dis-
criminating mainly between HFL or VFL problems (see Sec-
tion III-C). Not all FL frameworks can deal with every kind of
scenario  (see Table I).  Therefore,  the  target  scenario  has  a
major influence on the framework to be used. If we deal with

an HFL problem, frameworks such as TFF, Flower, or PySyft
can  be  used,  while  FATE  or  PaddleFL  frameworks  can  be
adopted  to  tackle  VFL  scenarios.  The  software  choice  is
entirely  at  the  user’s  discretion,  according  to  its  experience
with  similar  frameworks,  the  specifications  of  the  problem,
and  other  concerning  factors.  In  the  following  sections,  we
discuss and analyse some of them in more detail.

Regardless  of  the  scenario,  we  should  also  check  whether
the data is inherently federated or not. In general terms, those
datasets that can be naturally divided into pieces, each belong-
ing to different clients according to their features or data dis-
tribution,  and  can  also  be  considered  as  inherently  federated
datasets. For example, the FEMNIST dataset includes alphanu-
meric  characters  written  by  more  than  3500  different  users;
therefore, the data can be distributed so that each client retains
the characters written by a single user, as it would occur be in
a real-world scenario where characters are collected by a per-
sonal  device.  Likewise,  in  the  Sentiment140  dataset  each
tweet is annotated with the user who wrote it, thus each client
can be identified with a user, giving rise to an inherently fed-
erated  dataset.  Conversely,  datasets  such  as  Credit2  have  no
natural  or  intrinsic  division  that  makes  their  partitioning
among  different  clients  relevant  to  be  solved  via  FL.  How-
ever, such partitions can be made for simulation purposes.

It  should  also  be  clarified  that  datasets  that fully comply
with  the  FL  framework  (i.e.,  they  are  already  distributed
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Fig. 6.     Workflow for designing a FL scenario. Read from top to bottom, it begins with the choice of the problem type, HFL or VFL, and continues choosing
the federated data distribution until the training strategy is designed, then the FL scenario is ready to be deployed and run.
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among different  parties  so  that  the  data  is  not  visible  outside
each  of  them)  are  not  commonly  found  for  simulation,  since
the  data  needs  to  generally  be  hosted  in  a  single  site  for  use
and distribution.  In  any of  the  cases,  if  the  data  is  inherently
federated,  it  can  be  directly  distributed  among  clients,
enabling the next step of our methodology: model selection.

In the HFL scenario, if the data is not inherently federated,
we must split the data by samples. There are two coarse distri-
butions: IID and non-IID (see Section III-A). The former (IID)
distributes the data evenly among clients, which can be a fea-
sible scenario in a minority of real-world use cases. The latter
(non-IID),  however,  implies  a  distribution  where  each  client
retains different quantities of data (quantity skew), having var-
ious  distributions  in  their  feature  space  (feature  distribution
skew),  having  information  about  entirely  different  classes  in
the  output  variables  (label  distribution  skew) [66], [67],  or
even a combination of them. In general, non-IID distributions
are  frequently  encountered  in  real-world  problems.  In  any
case, the data distribution should be selected depending on the
simulation  to  be  performed.  It  should  be  noted  that  to  simu-
late  an  IID  scenario,  just  a  random  partition  of  the  dataset
must be performed. However, simulations of non-IID scenar-
ios  are  instead  driven  by  the  approach  followed  to  allocate
certain  data  instances  to  each  federated  node,  often  made
according  to  a  Dirichlet  distribution,  where  the  imbalance
level  of  each  dataset  is  controlled  by  a  parameter β [66].  In
any case, once data is partitioned, it is also distributed among
the  clients,  so  that  each  of  them receives  different  data  sam-
ples that will be no longer available outside each client.

If  facing  a  VFL  problem  where  the  data  is  not  inherently
federated,  the  data  is  split  by  features.  At  this  point  we  note
that, in the case of VFL, the non-IID nature of the data arises
from the  non-overlapping  feature  distribution  among  the  dif-
ferent clients and the number or types of features available at
each  client [67].  Once  partitioned,  each  client  receives  the
same set  of  data  samples  but  with  a  different  set  of  features,
where the class label is only held by one of them.

b) Model Selection: Once the data is distributed among the
clients,  the  next  step  would  be  the  selection  and  deployment
of the model. Depending on the task, we can choose between
supervised  learning  models,  such  as  decision  tree  models;
unsupervised  learning  models  such  as  clustering  models;  or
any other traditional ML model or deep learning model. As in
any traditional learning approach, the model to be used in the
federated  scenario  will  much  depend  on  the  problem  to  be
faced. For example, convolutional architectures based on con-
volutional neural  networks (CNN) have been proven to work
well for image classification problems [68], recurrent architec-
tures  based  on  recurrent  neural  networks  (RNN)  have  been
widely used for text classification, SA, or temporal prediction
problems [69], [70],  and  other  traditional  machine  learning
approaches such as decision trees or support vector machines
have been applied for years to simpler problems with tabular
data,  such  as  bank  credit  risk  prediction [71].  When  there  is
not a great amount of data available or there is a non-IID data
distribution among the clients, it can be interesting to use pre-
trained  models  and  fine-tune  them  for  the  task  to  be  solved
[72], [73].  As  a  result,  we  can  train  large  models  and  take

advantage  of  their  knowledge,  getting  better  models  and
requiring  fewer  resources  than  training  them  from  scratch
[74].

c)  Aggregation  Strategy: All  the  aforementioned  models
have  different  adaptations  to  the  FL  setting,  driven  by  the
aggregation  step,  where  local  models  are  combined.  If  the
model  can  be  expressed  as  an  array  of  parameters  (i.e.,  deep
learning  models),  a  generic  and  simple  aggregator  like
FedAvg can be chosen.  FedAvg performs the weighted aver-
age of the collection of local client models, by computing the
weighted  average  of  the  arrays  of  parameters,  where  each
array  of  parameters  corresponds  to  a  local  client  model  and
the weight factor is the proportion of the client data volume to
the  total  data  volume.  Note  that,  there  exists  more  complex
variants of FedAvg, designed to alleviate the difficulties asso-
ciated  to  non-IID-ness,  Byzantine  attacks  or  the  lack  of  per-
sonalization [75].  Conversely,  if  the  chosen model  cannot  be
expressed as an array of parameters (such as decision trees or
k-means  clustering),  an  advanced  and  specific  aggregator
should  be  selected  or  implemented  ad-hoc  to  collaboratively
learn such a model in a FL scenario.

Further along this methodological step, in general, the same
type of model is selected for all clients, and a first version of
the  model  is  distributed  among  them.  However,  other
approaches enable each client to use a model with a different
structure,  which is then aggregated by the central  server usu-
ally following an ensemble approach [76], [77]. While the for-
mer  makes  it  generally  easier  to  aggregate  local  models  and
speeds  up  the  convergence  of  the  global  model,  the  latter
overcomes the problem where small participating devices may
not have equal access to computing resources, potentially not
being capable of running complex models.

d)  Training  and  Evaluation  Strategy: The  last  remaining
step of our methodological guidelines is to design the training
strategy,  which  involves  several  aspects  such  as  defining  the
number  of  training  rounds  (i.e.,  the  number  of  communica-
tions  between  server  and  clients  to  converge  to  the  joint
model),  the  number  of  clients  participating  in  each round (in
some  cases,  only  a  fraction  of  the  clients  participate  in  each
round), the optimizer, or any other parameter of specific to the
model, as well as the evaluation method of the trained model.
This evaluation should be considered at two levels: client level
and global  level.  The  former  considers  a  set  of  test  metrics
designed  to  evaluate  the  performance  of  a  FL model  accord-
ing  to  the  specific  needs  and  target  specifications  of  each
client.  Given  the  potentially  non-IID  distribution  of  each
client,  their  evaluation  is  not  enough  to  assess  the  perfor-
mance  of  the  whole  FL model.  Nevertheless,  these  values  in
combination with other statistical properties can be devised to
select certain clients to aggregate in each step [78]. While the
global  level evaluation  also  considers  a  set  of  test  metrics  to
evaluate the performance of a FL model from a wider perspec-
tive,  it  considers  testing  the  scalability  of  the  chosen  FL
model,  i.e.,  the  FL  system  performance.  Consequentially,  in
addition to the FL benchmarks presented in LEAF [35], a FL
practitioner must be encouraged to benchmark FL system per-
formance [79]. It is common to assume that all clients uncon-
ditionally want to participate, meaning that there is no reward
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for each participant other than the globally trained model. Ide-
ally,  each  client  joining  a  FL  process  contains  a  unique  and
private local dataset and expects to be fairly rewarded with a
better  model [3], [9].  However,  realistically,  potential  clients
have the agency to decide whether to join or remain in the FL
process  based  on  how  their  individual  collaborations  will  be
rewarded.  In  this  sense,  from a  game theory  perspective  it  is
possible to provide each client with a fair payoff [80].  

VI.  Comparative Study of FL and Non-FL Scenarios:
Should FL be Always Considered?

A first question to be addressed is whether FL provides any
benefits with respect to isolated local training (non-FL) when
the data is distributed among several clients. This section elab-
orates  on  this  by  presenting  a  performance  comparison
between  FL  and  non-FL  strategies  when  the  data  is  dis-
tributed among several clients, with the aim to show the bene-
fits of collaboratively training a model with FL.

To  compare  FL  and  non-FL  scenarios,  we  consider  three
cases: 1) A single model trained using all the data in a central-
ized  manner,  which  will  be  referred  to  as centralized  model;
2)  A  number  of  models,  each  one  trained  by  each  of  the
clients using only their local data and not sharing any informa-
tion with the other parties, referred to as local models; and 3)
A  single  shared  model  trained  among  all  clients  but  without
exposing their data, i.e., a FL model. The centralized model is
usually considered as an upper-bound theoretical limit for the
performance  of  the  federated  model,  since  a  better  model  is
usually expected if all the data is gathered. However, note that
this model is created only for comparison purposes so imple-
menting  it  in  real-world  federated  scenarios  is  not  possible,
since the data cannot leave each client to create a single cen-
tralized dataset.  Conversely,  it  is  expected that  the FL model
performs better  than the local  models  by themselves,  since it
should benefit from the collaborative training.

For the experiments, we use the MNIST dataset. As noted in
Section III-A, we consider both IID and non-IID partitions. In
this use case, and to make a fair comparison, we use only one
framework, i.e., TFF for the federated model and TensorFlow
for the baselines. In this way, we ensure that there are no dif-
ferences  in  the  architecture  or  internal  implementation  of  the
models. Besides, the model is composed of CNN layers, given
their success in image classification tasks [68]. All models are
evaluated  using  the  same  set  of  evaluation  data  which  is  as
well IID or non-IID, according to the experiment at hand.

For  the  experimental  setup  in  the  FL  scenario,  10  clients
have  been  considered,  whose  models  have  been  collabora-
tively  trained  for  a  total  of  10  rounds,  with  5  local  training
epochs run before communicating with the central model. The
centralized  and  local  models  are  trained  for  a  total  of  50
epochs.  Results  of  the  experiments  reported  in  what  follows
are  averaged  among  10  executions  using  different  seeds,
ensuring  the  statistical  consistency  of  the  comparison.  The
experiments were executed in a computer with Ubuntu 18 OS,
an Intel Xeon E5-2698 CPU and 512GB RAM.

a) IID Scenario: We first analyse the results when the data
is IID (see Table III). The table includes the training and test-
ing loss and accuracy metrics, as well as the runtime required

to  train  and  test  the  models.  As  expected,  the  centralized
model  performs  slightly  better  than  the  federated  one.  The
benefits  of  collaboratively training a shared model among all
clients are clearly stated when comparing the performance of
the  FL model  versus  the  local  ones.  Note  that  the  runtime in
the  federated  scenario  is  higher  due  to  communication  over-
head.  Although  the  FL  model  performs  better  than  the  local
ones  when  the  data  is  IID,  in  most  real-world  scenarios  the
data distribution is non-IID.
 

TABLE III 

Comparison Among the Federated Model
Versus Baselines With IID Data

Centralized model Local models (IID) FL model (IID)

Train loss 0.026 0.064 0.043

Train accuracy 0.992 0.983 0.989

Test loss 0.047 0.113 0.090

Test accuracy 0.985 0.966 0.973

Runtime (s) 140.7 16.1 749.5

 
 

b) Non-IID Scenario: In Table IV a comparison among the
local  and  FL  models  using  non-IID  data  is  performed.  Note
that, in this case, it does not make sense to compare against a
centralized model,  since we cannot refer to non-IID data if  it
is  not  distributed.  For  such  experiments  with  non-IID  data,
two different  configurations have been considered:  10 clients
and 10 FL rounds, as in the previous case, and 20 clients with
20  learning  rounds.  On  average,  each  client  in  the  MNIST
data has less than 100 images, which is insufficient to build a
good model.
 

TABLE IV 

Comparison Between the Federated Model Versus Local
Ones With Non-IID Partitions

Local models
(non-IID)

FL model
(non-IID)

10 clients 10 rounds

Train loss 2.173 0.658

Train accuracy 0.311 0.851

Test loss 2.243 1.063

Test accuracy 0.192 0.640

Runtime (s) 2.4 27.9

20 clients 20 rounds

Train loss 4.119 0.257

Train accuracy 0.869 0.928

Test loss 4.371 0.451

Test accuracy 0.527 0.852

Runtime (s) 4.6 75.9

 
 

When running the experiment with 10 clients and 10 learn-
ing rounds, the local models achieve poor performance, with a
test  accuracy  lower  than  0.2.  In  the  same  scenario,  the  FL
model achieves acceptable performance, but it is still possible
that more data or epochs may be needed to get a better model,
given  the  limited  amount  of  data  that  each  client  has  in  this
case. Conversely, when training the models with more clients
and  for  a  higher  number  of  epochs,  we  observe  that  the  FL

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 833 

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore.  Restrictions apply. 

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com



model  obtains  much  better  performance  (with  an  accuracy
over  0.85  in  test),  and  still  improves  the  performance  of  the
local  models.  Thus,  the  model  performance varies  depending
on  the  number  of  clients  or  data  available,  which  might  be
fixed  by  the  environment,  and  by  the  number  of  training
rounds  performed,  which  may  be  adjusted;  in  any  case,  the
benefits of FL versus isolated local models are clearly stated.

c)  Final  Conclusions: Considering  the  above  experimental
results, we conclude that:

● If  we face a scenario where multiple local  clients  aim to
build a model, but they cannot (or do not wish to) share their
data,  and it  is  recommended to build a model  collaboratively
using FL. This recommendation is even more important when
the  data  is  non-IID,  which  is  the  most  common case  in  real-
world  scenarios,  not  only  because  better  results  can  be
obtained (as Tables III and IV clearly expose), but also beca-
use the model can be enriched with more knowledge.

●  When  collaboratively  building  a  model,  the  average
improvement  in  testing  accuracy  among  the  different  evalu-
ated  scenarios  when  compared  to  isolated  local  model  train-
ing is around 98%, which is 230% higher than in non-IID sce-
narios with 10 clients and 10 learning rounds.  

VII.  Federated Learning for Practitioners:
Exemplary Use Cases

We proceed by presenting six exemplary use cases to study,
from a  practical  perspective,  FL scenarios,  several  ML prob-
lems and demonstrate  the  process  to  solving them with  three
selected  frameworks.  In  all  cases,  the  workflow  proposed  in
Section  V  is  followed.  Several  scenarios  are  considered
according to the diversity of data and models, as follows.

First,  Section VII-A demonstrate how to perform an image
classification  using  deep  learning  models  in  a  HFL  setting
(Use  Case  1  (UC1)).  Next,  Section  VII-B  delves  into  a  SA
classification  problem  using  deep  learning  models  in  HFL
(Use  Case  2  (UC2)).  Section  VII-C  showcases  how  to  per-
form  VFL  classification  using  decision  trees,  with  a  tradi-
tional  ML  algorithm  interpretable  by  design  (Use  Case  3
(UC3)).  Section VII-D introduces a method to train FL mod-
els with DP (Use Case 4 (UC4)). Finally, Section VII-E illus-
trates  the  training  of  unsupervised  clustering  models  in  HFL
(Use Case 5 (UC5)),  whereas VII-F concludes the section by
showing  the  training  of  clustering  models  in  a  VFL  setting
(Use Case 6 (UC6)).

Before  describing  them,  we  pay  attention  to  the  three
selected  frameworks  that  we  consider  relevant  for  further
analysis: TFF, Flower and FATE.

● TFF: an open-source ML platform that extends the widely
known TensorFlow to perform federated ML. TensorFlow is a
reference platform in deep learning, which has great popular-
ity and support from the community and its developers. There-
fore, users who are familiar with TensorFlow and want to start
developing models for FL will find it much easier to do so in
TFF than in any other platform.

● Flower: Flower has gained popularity recently, given that
it  is  much  simpler  and  more  familiar  to  use  than  other  plat-
forms.  Although  it  was  launched  more  recently  than  TFF,  it
has  a  community  supporting  it  and  it  is  actively  maintained.
The  general  characteristics  of  both  TFF and  Flower  are  very
similar,  but  TFF  partially  supports  the  creation  of  non-IID
data partitions and offers slightly more support for DP. How-
ever,  it  should  also  be  noted  that,  while  TFF  allows  defini-
tions of any deep learning model that could be created in Ten-
sorFlow and Keras,  Flower  also  allows  using  models  written
in PyTorch, which is another major tool for deep learning.

● FATE: Finally,  since  neither  TFF  nor  Flower  consider
VFL  scenarios  within  their  frameworks,  we  have  selected
FATE,  which  does.  Compared  to  the  rest  of  the  frameworks
that  consider  VFL,  FATE  is  the  one  that  offers  the  most
options  and  has  the  most  complete  and  clear  documentation.
As  subsequently  presented,  the  implementation  of  FATE’s
code is  not  based on any other  prior  framework (as  TFF and
Flower  were  on  TensorFlow,  Keras  or  PyTorch),  but  defines
its procedure based on a pipeline where different components
are added, compiled and ran.

Unless otherwise indicated in any of the use cases, the same
experimental setup as in Section VI is used.

The most important code excerpts required to complete the
use cases are presented in the paper. The whole use cases are
available  as  Python  notebooks  on  the  following  website:
https://github.com/ari-dasci/S-TutorialFL. Notebooks are fully
documented so that the user can run and reproduce the results,
or even modify them in a way that maximizes the learning and
understanding  of  the  different  frameworks  and  the  FL  work-
flow itself.

A summary of the use cases is presented in Table V, accord-
ing  to  the  different  aspects  described  in  the  methodology for
designing  a  FL  scenario,  such  as  the  problem  type,  being
either HFL or VFL; if the data used has an inherent federated
distribution;  whether  the  dataset  is  split  as  IID  or  non-IID
among the  clients;  which kind of  aggregator  (generic  or  spe-
cific)  is  used;  and  which  kind  of  model  is  used  to  solve  the
task at hand.  

 

TABLE V 

Summary of Use Cases According to the Methodology to Design a FL Scenario

Use case Problem type Framework Naturally federated data Data distribution Aggregator Model

UC1 HFL TFF, Flower, FATE Yes/No non-IID/IID Generic CNN & Dense deep neural network

UC2 HFL TFF, Flower No IID Generic Deep neural network

UC3 VFL FATE No non-IID Specific Decision trees

UC4 HFL TFF Yes/No non-IID/IID Generic CNN with DP

UC5 HFL TFF No IID Specific k-means

UC6 VFL FATE No non-IID Specific k-means
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A.  UC1: Image Classification Using Deep Learning in HFL
In  recent  years,  different  deep  learning  techniques  have

been  used  to  solve  a  plethora  of  problems.  Besides,  image
classification is one of the most common challenges in ML. In
this  case,  we  demonstrate  the  process  of  performing  image
classification using the MNIST dataset.

Following the methodology described in Fig. 6:
1) Problem Type: The first step is to determine which prob-

lem we  tackle.  In  this  case,  the  problem is  reported  as  HFL,
i.e.,  each  client  holds  different  data  patterns  following  the
same  input  feature  set.  As  the  three  selected  frameworks
(TFF, Flower, and FATE) can deal with HFL problems, all of
them are used.

2)  Federated  Distribution: In  this  use  case,  we  deal  with
two different  data distributions:  i)  the intrinsic non-IID parti-
tion is considered, so that each client receives digits written by
a  unique  user  and  ii)  the  whole  dataset  is  divided  into  simu-
lated IID partitions, so the data in each client follows a simi-
lar distribution.

3)  Model  Selection: Two  different  deep  learning  networks
are  used  to  solve  the  problem:  one  including  a  CNN  layer,
which  is  widely  used  for  image  classification [68],  and
another  using only densely  connected neural  layers,  which is
less complex.

4)  Aggregation  Strategy: As  deep  network  parameters  are
vectorizable, a generic aggregator such as FedAvg is used.

5) Training and Evaluation Strategy: Finally, to be as close
as  possible  to  real-world  settings  where  there  are  usually  no
shared data fragments (i.e., no global test set is available), the
evaluation is carried out by assessing the model over the local
test data sets at each client, reporting the average value of the
performance  metrics.  Such  test  sets  will  also  have  either  an
IID or non-IID distribution, according to the type of partition-
ing that was also used for training.

Firstly,  we demonstrate the process of solving the use case
with TFF. In TFF, there are two main ways to load the data: i)
loading those datasets that TFF provides specifically designed
for their platform, which are already federated as non-IID par-
titions,  or  ii)  loading  any  other  dataset  and  distributing  it
among  the  clients.  In Listing 1,  the  non-IID  partitioned
MNIST  data  is  loaded  from  TFF  (each  instance  is  already
assigned to a client); while in Listing 2, the traditional MNIST
dataset is loaded from tensorflow datasets package and trans-
formed  into  a  dataframe  with  a  random client  id,  so  that  the
IID  partition  can  be  created  later.  After  loading  the  data  as
presented,  it  must  be  preprocessed  to  match  the  model
required  input  structure  and  distributed  among  the  different
clients. Note that in this case, we present the two possibilities
presented in the HFL scenario in Section V: either having an
inherently federated dataset (Listing 1) or simulating the parti-
tioning and distribution of the data among clients (Listing 2).

28×28

To define the models, a method that returns a Keras model
must be created. In Listing 3 we show how to create a CNN; a
similar  process  should  be  followed  to  create  any  other  net-
work  architecture.  For  this  specific  problem,  the  data  is  first
reshaped, so it is represented as a  pixel matrix. Later, a
two-dimensional  CNN  layer  with  32  filters,  a  kernel  size  of

5×5 pixels, and a ReLU activation function is created, which
ends with a dense layer with 10 output units, one for each out-
put class. In addition, a method that creates the model for the
federated scenario,  including not  only the network to use but
also  the  input  specification,  loss,  and  evaluation  metrics
should be created.  In this  case,  categorical  cross-entropy loss
and accuracy are used, given the output nature of the problem.
A  more  in-depth  analysis  on  CNNs  for  image  classification
can be found in [68].

To train in TFF, a training strategy should be first  defined.
As  the  model  can  be  expressed  as  an  array  of  parameters,  a
generic  aggregator  as  FedAvg  is  employed  (see  Section  V).
Since an unweighted FedAvg method is used in this case, each
client has the same importance in the learning process. Never-
theless,  a  weighted  FedAvg  approach  could  also  be  used,
where  the  contribution  of  each  client  to  the  global  model  is
biased by the amount of data available locally. Besides, Adam
is used as the optimizer; note that different learning rates may
be set for the client and the server. Once the process is initial-
ized,  the  model  is  collaboratively  trained  for  several  rounds.
The choice of the number of rounds can be driven by the spe-
cific requirements of the problem, such as runtime constraints
or  the  convergence  and  performance  achieved  by  the  model.
This process is presented in Listing 4.

 

 
Listing 1.     UC1:  image  classification  using  deep  learning  in  HFL  in  TFF.
Loading TFF’s MNIST dataset.
 

 

 
Listing 2.     UC1:  image  classification  using  deep  learning  in  HFL  in  TFF.
Loading MNIST from other sources.
 

 

 
Listing 3.     UC1:  image  classification  using  deep  learning  in  HFL  in  TFF.
Creating a CNN model.
 

LUZÓN et al.: A TUTORIAL ON FEDERATED LEARNING FROM THEORY TO PRACTICE: FOUNDATIONS, SOFTWARE FRAMEWORKS 835 

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 03,2024 at 07:11:40 UTC from IEEE Xplore.  Restrictions apply. 

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com



In  contrast,  Flower  provides  neither  non-IID  partitioned
datasets  nor  mechanisms  to  create  such  partitions.  As  we  do
not have an inherently federated dataset, the MNIST dataset is
loaded from PyTorch’s torchvision module, and later it is IID
partitioned  among  the  different  clients,  following  a  simple
uniform random data distribution (Listing 5).
 

 
Listing 5.     UC1: image classification using deep learning in HFL in Flower.
Loading the MNIST dataset.
 

5×5

As previously mentioned, Flower allows using either Keras
or  PyTorch  models.  To  show  an  alternative  to  the  previous
case,  in  Flower  we  use  PyTorch  models.  In Listing 6,  an
example method to create a CNN model is presented. We note
that  although  the  code  snippet  is  different  from  that  of  TFF,
the  structure  of  the  network  is  the  same:  a  two-dimensional
CNN  layer  with  32  filters  and  kernel  size  of  pixels,
ReLU activation function, and a final dense layer with 10 out-
put units. A similar process should be followed to create other
architectures.
 

 
Listing 6.     UC1: image classification using deep learning in HFL in Flower.
Creating a CNN model.
 

In  Flower,  the  user  must  define  the  train  and  test  methods
(as if for a centralized scenario). To adapt such methods to the

FlowerClientfederated  scenario,  first  a  class  is  defined,  so
each client  in  the  federated  simulation  is  an  instance  of  such
class  and  has  its  data  and  copy  of  the  network.  To  allow
Flower to create client instances and simulate the model distri-
bution (see Section V), it is necessary to create a method such
as the one shown in Listing 7.
 

 
Listing 7.     UC1: image classification using deep learning in HFL in Flower.
Method to create client instances.
 

Flower’s FedAvg implementation is used in this example to
train the model in the federated scenario. Note that more met-
rics can be reported if the user defines their strategy (as shown
in the notebook). To start the simulation, we must indicate the
method  to  create  the  clients,  how many  clients  are  involved,
the  configuration  for  the  server  (including  the  number  of
rounds), and the strategy to follow, as presented in Listing 8.
 

 
Listing 8.     UC1: image classification using deep learning in HFL in Flower.
Training in the federated scenario.
 

To  conclude  with  the  implementation  of  this  use  case,  we
show how to perform image classification in FATE. The first
thing to  note  about  FATE is  that,  although running on a  sin-
gle  machine,  the  user  must  set  up  different  clients.  For  that
purpose,  each client  is  assigned a  different  id  to  simulate  the
real-world  scenario,  and  they  are  assigned  as  either guest or
host roles.  In  this  case,  many  hosts  can  be  configured,  we
define the first client as the guest and the rest as hosts.

In addition to those roles, there is also an arbiter role, which
orchestrates  the  learning  process.  FATE  is  based  on  the  cre-
ation of a pipeline, so once created, the id of each participant
is indicated (Listing 9).

Reader

FATE  does  not  provide  datasets,  but  they  can  be  loaded
from external sources. For such a purpose, the user must con-
figure a  component, as shown in Listing 10, where the
data  path  is  specified.  In  this  case,  the  dataset  is  not  directly
loaded from the external  source within the code,  but  MNIST
images  have  been  downloaded  and  placed  in  a  directory
divided into folders for  each client  and train/test  partition,  so
that FATE can read them.

It  should  also  be  noted  that,  in  the  HFL  scenario,  FATE
only allows using networks comprising PyTorch’s dense lay-
ers. Thus, in this case, Listing 11 demonstrates the implemen-
tation of only the dense architecture in FATE, but not the one
comprising  CNN  layers.  This  network  is  simpler  than  the

 

 
Listing 4.     UC1 of image classification using deep learning in HFL in TFF.
Training in the federated scenario.
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28×28 = 784
previous  ones,  considering  the  input  as  a  sequence  of

 input units,  which are transformed into 32 hid-
den layer units with a linear or dense layer, uses a ReLU acti-
vation function,  and ends again with 10 output  units,  one for
each different class.

HomoNNTo  define  the  training  process,  the  class  is  used
(Listing 12).  It  includes  the  definition  of  the  model  to  use,
loss, optimizer, dataset, and training strategy. The parameters
are the same as those used in previous cases.

nn_0

fit()

After creating each of the components (such as the  in
Listing 12),  they  must  be  added  to  the  pipeline  as  shown  in
Listing 13. The training process is started once the pipeline is
compiled  and  called  the  method.  The  creation  of  such
pipeline is further described in the corresponding notebook.

Once we describe how to implement the solution to the use
case in each of the platforms, we show some results obtained
from  their  execution.  In Table VI we  report  the  training  and
testing  loss  and  accuracy  obtained  by  the  models  (both  the
convolutional  and  dense  architectures;  except  for  FATE,
which  does  not  support  CNNs),  as  well  as  the  required  run-
time to perform the federated training and evaluation. Besides,
note that FATE does not report loss value for testing data. To

date,  FATE  was  unable  to  deal  with  more  than  4  hosts,  so
FATE’s experiments were executed with only 5 clients instead
of 10.

It can be first observed that the accuracy results between the
different frameworks are similar, and their differences may be
given by implementation differences in the models. Moreover,
results  corresponding  to  TFF  and  Flower  show  that,  as
expected,  the  convolutional  architecture  performs  better  for
image  recognition  purposes  compared  to  a  simpler  architec-
ture.  In  fact,  it  should  be  noted  that  only  10  global  learning
rounds have been used for  the experiments,  but  better  results
may  be  obtained  if  it  were  executed  for  a  higher  number  of
rounds. According to execution times, there is no clear differ-
ence  between  TFF  and  Flower,  while  TFF’s  dense  network

 

TABLE VI 

Results of UC1 With the Image Classification Task Using
Deep Learning in HFL for the Three Frameworks and

Two Network Architectures. N/A Values Indicate
That Neither the CNN Could be Built in FATE Nor

Could the Testing Loss be Reported in FATE

TFF Flower FATE

Dense

Train loss 0.192 0.002 1.489

Train accuracy 0.947 0.991 0.968

Test loss 0.276 0.006 N/A

Test accuracy 0.922 0.965 0.947

Runtime (s) 53.6 198.5 1516.7

CNN

Train loss 0.043 0.000 N/A

Train accuracy 0.989 1.000 N/A

Test loss 0.090 0.002 N/A

Test accuracy 0.973 0.987 N/A

Runtime (s) 749.5 337.1 N/A
 

 

 
Listing 9.     UC1: image classification using deep learning in HFL in FATE.
Create a pipeline and set roles.
 

 

 
Listing 10.     UC1: image classification using deep learning in HFL in FATE.
Creating a Reader component.
 

 

 
Listing 11.     UC1: image classification using deep learning in HFL in FATE.
Creating a dense network model.
 

 

 
Listing 12.     UC1: image classification using deep learning in HFL in FATE.
Configure the federated training.
 

 

 
Listing 13.     UC1: image classification using deep learning in HFL in FATE.
Configure pipeline and train.
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runs  faster  than  Flower’s,  Flower  is  faster  at  executing  the
CNN. However, it is clearly shown that FATE is much slower
than  the  rest  of  the  frameworks.  Therefore,  according  to  the
presented results, Flower might be the best option using a con-
volutional  architecture  for  image  classification,  obtaining  the
best  performance  much  faster  than  TFF.  In  contrast,  FATE
does not seem to be a suitable option for HFL image classifi-
cation  purposes.  However,  and  as  previously  stated,  such  a
selection  might  also  be  biased  by  other  factors;  for  example,
an expert user of TensorFlow might choose TFF over Flower
if the runtime is not of crucial  importance, since the learning
curve for creating the FL models will be much lower.  

B.  UC2: Sentiment Analysis Using Deep Learning in HFL
NLP problems have also topped the literature topics in ML,

even more with the growth of deep learning models in the last
decade. In this use case we show how to perform SA with the
Sentiment140  dataset,  using  a  pretrained  network  instead  of
building it from scratch.

Following the proposed methodology:
1)  Problem  Type: The  first  step  is  to  check  the  problem

under  consideration.  As  in  the  previous  case,  the  problem in
UC2 is also HFL, where each client holds different tweets that
are  private  and  cannot  be  accessed  by  other  clients.  Having
analysed  the  limitations  of  FATE  according  to  the  network
architectures (only dense layers are allowed), in this use case,
we  only  consider  TFF  and  Flower  frameworks  to  solve  the
problem.

2) Federated Distribution: For this use case, a simulation of
an IID partition among clients is made, and a pretrained deep
learning  network  is  used,  which  is  specifically  designed  for
text processing tasks. The weights of this pretrained model are
publicly available9.

3)  Model  Selection: Fine-tuning  a  model  that  has  been
specifically proposed for text  processing tasks is  a promising
starting  point,  as  we  rely  on  a  model  that  has  been  success-
fully tested on similar  modelling problems.  The fact  that  this
model has already been pretrained over similar data makes the
convergence  much  faster  and  therefore  better  performance
levels  can  be  reached  within  shorter  execution  times,  which
becomes even more important in FL environments due to the
need for reducing the communication overhead.

4)  Aggregation  Strategy: As  would  happen  with  any  other
deep  learning  network,  the  parameters  are  vectorizable,  so  a
generic aggregator is used.

5) Training and Evaluation Strategy: As in the previous use
case,  and as would be in most  real-world cases,  the model  is
evaluated  using  local  and  private  test  datasets,  where  each
client reports the metric values over their own data.

First,  we  analyse  how  to  solve  the  use  case  in  TFF,  high-
lighting  the  main  differences  with  the  previous  use  case.  In
this case, the data is downloaded from tfds, as in Listing 2, the
percentage of data used both at  training and testing phases is
also  provided  (see Listing 14).  Note  that  the  Sentiment140
dataset has 1.6 million instances, a fraction of it is used so that
the  experiments  can  be  executed  in  a  reasonable  time.  Then,

the  columns  according  to  the  tweet  text  and  its  polarity  are
selected and the data is  transformed to a dataframe, so it  can
be  later  converted  to  a  dataset  format  required  by  TFF.  The
tweets  should  also  be  processed  using  the  text_processing()
method that removes punctuation marks and converts them to
lowercase,  among  others,  as  seen  in  the  corresponding  note-
book.  In order  to  make IID partitions,  a  random list  of  ids  is
created  so  that  the  instances  are  randomly  distributed  among
the clients. Thus, each client has access to a different portion
of the training data.

The  Sentiment140  dataset  has  three  classes  by  default:  0
(negative),  2  (neutral),  and  4  (positive).  In  previous  use  case
we already dealt with a multi-class problem, so in this case we
are  transforming  it  to  a  binary  one.  For  that  purpose,  we
remove  the  neutral  instances,  so  the  aim  is  to  differentiate
between  negatively  and  positively  polarized  tweets.  Such  a
process is made as in Listing 15, where tweets with a neutral
polarity  are  removed.  Tweets  with  a  positive  polarity  (i.e.,  a
value  of  4)  are  given  class  value  of  1,  whereas  negatively
polarized tweets are assigned to class 0.
 

 
Listing 15.     UC2: SA using deep learning in HFL in TFF. Transform the
multi-class problem to a binary one.
 

True

The model can be defined as in Listing 16. In this case, the
create_keras_model()  method  creates  a  network  that  is  based
on a pretrained model, whose weights are frozen during train-
ing.  If  the  user  would  like  to  also  fine-tune  it,  the  parameter
should be changed to , however it will make the training
phase  last  longer.  Besides  adding  such  pretrained  layers,  we
include  an  extra  layer  with  16  neurons  and  ReLU  activation
function,  as  well  as  a  final  layer  with  only  one  output  unit.
Since  this  is  a  binary  classification  problem,  a  single  output
unit  is  enough  to  predict  the  polarity  of  the  tweet.  Despite
using  the  above  model,  any  other  model  from tfhub or  other
repositories  might  be  used.  Other  architecture  created  by  the

 

 
Listing 14.     UC2: SA using deep learning in HFL in TFF. Loading and pro-
cessing and distributing a percentage of Sentiment140 dataset as IID data.
 

  
9 https://tfhub.dev/google/nnlm-en-dim128-with-normalization/2
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user  himself  from  scratch  could  be  also  utilized  as  well,
although  it  would  not  benefit  from  the  advantages  described
above  when  using  a  pretrained  and  problem-specific  model.
Moreover,  the  model_fn()  method  presents  some  differences
regarding the previous use case, mainly being the loss and the
metrics  in  use.  In  this  case,  binary  cross-entropy  loss  and
accuracy  are  used  instead  of  their  categorical  counterparts,
due to the binary nature of the classification problem.

The  rest  of  the  process,  including  the  configuration  of  the
training strategy and finally running the FL algorithm, is per-
formed as in the previous TFF’s use case.

In  this  use  case,  we  also  show  how  to  solve  the  SA  in
Flower;  however,  minimum differences  exist  in  the  solutions
already  presented.  The  data  is  loaded,  processed  and  bina-
rized  as  in  TFF  (see Listing 14 and Listing 15).  In  Section
VII-A,  we mentioned that  Flower  can  handle  either  Keras  or
PyTorch models; while in UC1 we used a PyTorch model; in
this  case  we use  a  Keras  model  so  that  we  show how to  use
both  of  them.  Therefore,  the  model  is  created  as  previously
presented  in Listing 16.  The  client_fn()  method  seen  in
Listing 7 remains the same, being the main difference that the
create_keras_model()  method  is  used  instead  of  CNN_Net().
Finally,  the  training  strategy  is  defined  as  in Listing 8.  The
whole process can be observed in the corresponding notebook.

Once  we  describe  how  to  perform  SA  with  both  TFF  and
Flower,  we present  some results  obtained from the execution
of the corresponding experiments. Table VII reports the train-
ing and testing loss  and accuracy obtained by the  models,  as
well as the required runtime to perform the federated training
and evaluation. In this case, although the data is obtained from
the  same  source  and  the  network  architecture  is  the  same
(based  on  a  pretrained  Keras  model),  as  well  as  the  learning
strategy,  the results  are  different.  It  is  interesting that  Flower
needs  only  around 40% of  the  time required  by  TFF to  train
the  model,  being  a  much  faster  option  in  this  case.  Besides,
the testing accuracy is higher in Flower’s implementation too,
making it a better option for performing federated SA.  

C.  UC3: Decision Trees in VFL
In contrast to previous use cases, we shift to a vertically par-

titioned data scenario, following the workflow:
1) Problem Type: The data is vertically partitioned, we face

a VFL problem.
2)  Federated  Distribution: As  in  most  real-world  VFL

cases, in this case we deal with a tabular dataset. Specifically,
we  use  the  Credit2  dataset  for  bank  credit  risk  prediction.
From the three selected frameworks, only FATE provides sup-
port for vertically partitioned data, so neither TFF nor Flower
are considered in this case. The data in this scenario does not
have  an  inherent  federated  distribution  (see Table I),  so  we
simulate it as a non-overlapping attribute-skewed non-IID par-
tition [67].

3) Model Selection: Although most of the work in FL relies
on deep learning models, in this use case we show how to use
traditional  ML models  such as  decision  trees,  which  are  par-
ticularly  suited  to  solve  this  problem.  Indeed,  decision  trees
have been used with considerable success throughout the liter-
ature [71]. We use the FATE’s SecureBoost [81] implementa-
tion over vertically partitioned tabular data.

4)  Aggregation  Strategy: As  decision  trees  cannot  be
expressed  as  an  array  of  parameters,  SecureBoost  defines  a
specific  aggregation  scheme  so  that  clients  generate  a  single
global model together.

5)  Training  and  Evaluation  Strategy: For  the  evaluation,
each  client  holds  its  portion  of  test  data;  thus  it  is  not  avail-
able for either the rest of clients or any central server. In this
case,  although the  test  instances  must  refer  to  the  same indi-
viduals, each client holds their unique and private features for
each instance.

Intersection

In VFL, features are distributed among the clients, however
only one of them owns the label feature.  In FATE, the client
with  the  labels  is  referred  to  as  the guest,  while  the  other  is
referred  to  as  the host.  Furthermore,  to  use  SecureBoost,  the
arbiter role is not needed. Given that the dataset is not inher-
ently federated, it is artificially partitioned and distributed for
the  VFL  scenario  by  FATE.  In Listing 17 a  CSV  file  is
uploaded  for  each  client.  Any  dataset  in  this  format  can  be
uploaded and used in FATE. Each CSV file contains a differ-
ent number of client-specific attributes, following a non-over-
lapping  feature  skew  non-IID  partition,  as  well  as  an  id  for
each instance, so the instances between different clients can be
matched.  Such  data  alignment  must  be  made  before  training
the  model  by  adding  an  object  to  the  pipeline
(Listing 18).  This  allows  each  party  to  identify  the  data

 

TABLE VII 

Results of UC2: (SA) Using Deep Learning
in HFL in TFF and Flower

TFF Flower

Train loss 0.563 0.002

Train accuracy 0.723 0.992

Test loss 0.494 0.006

Test accuracy 0.889 0.966

Runtime (s) 470.2 186.5
 

 

 
Listing 16.     UC2: SA using deep learning in HFL in TFF. Creating a model
using pretrained layers.
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instances  participating  in  the  training,  without  any  further
information besides their id.
 

 
Listing 17.     UC3: decision trees in VFL in FATE. Loading dataset.
 
 

 
Listing 18.     UC3: decision trees in VFL in FATE. Data intersection by id.
 

The model and training strategy is defined as in Listing 19.
Here,  the  different  parameters  of  the  model  are  set  up:  the
objective or loss metric, the encryption type, and other param-
eters  for  the trees such as the number of  trees and maximum
depth.  Then,  the  model  component  is  added  to  the  pipeline
where, the input data of the model is the one received by the
previous clients’ data.
 

 
Listing 19.     UC3: decision trees in VFL in FATE. Creating SecureBoost
model.
 

The  final  steps  to  start  the  learning  process  are  to  compile
and  fit,  as  previously  seen  in Listing 13.  Besides,  the  FATE
board  allows visualisation  of  some results,  such as  the  struc-
ture of the built trees. Note that when analysing the trees, they
only contain detailed information about the guest or host par-
ties, depending on who is accessing it, that is, each guest party
cannot  observe  information  about  other  parties,  and  vice
versa. For example, Fig. 7 shows the host who is accessing the
tree; thus, in the nodes that are partitioned by its attributes, the
full information of the node is presented, while for those that
are  partitioned  by  guest’s  attributes,  no  information  is  pro-
vided to prevent leakage of private information.  

D.  UC4: Introducing Differential Privacy
Previous use cases did not increase privacy during the train-

ing process, as discussed in Section III-D. In this use case, we
show how to  use  DP techniques  when  training,  thus  enhanc-
ing data privacy on the client side.

Following  the  workflow  for  designing  a  FL  scenario  (see
Fig. 6),  the  DP  process  leads  either  to  the  phase  of  model
selection and deployment across nodes phase, or the design of
the training strategy. The former refers to models that intrinsi-
cally  protect  the  privacy  of  clients  and  their  data  by  their
design, while the latter refers to additional mechanisms to pro-
tect such privacy, which are independent of the model in use.
In the literature, independent mechanisms are more common,
since they can be applied to a wider range of methods.

The problem to face in this use case is HFL, and TFF is the
only  framework  in  our  selection  that  implements  DP mecha-
nisms. The other frameworks are therefore discarded. The rest
of  the  workflow  is  very  similar  to  UC1  but  including  DP  in
the  training  process.  Specifically,  the  widely  used  DP  with
adaptive clipping proposed in [82] is used, as it is the only DP
method available in TFF. For the data, both intrinsic non-IID
data  distribution  and  simulated  IID  partition  are  included  in
the  experimental  setup.  Having  analysed  the  results  in  UC1,
only  the  CNN  model  is  considered,  using  a  generic  FedAvg
aggregation strategy.

Differences with UC1 are scarce, as it is simple to incorpo-
rate DP into the learning process. As presented in Listing 20,
the only change to introduce the DP mechanism is to define a
DP aggregator when designing the learning strategy in the last
step of the workflow. This aggregator receives as parameters a
multiplier  for  the  Gaussian  noise,  as  well  as  the  number  of
clients expected to participate in each round. Then, the aggre-
gator is set up when creating the federated average process. In
each  round,  clients  send  their  parameters  by  inducing  a  cer-
tain  amount  of  noise  on  their  transmitted  values,  which  fur-
ther protects their local information.

In Fig. 8, we show the variation in performance in terms of
testing  accuracy  and  testing  loss  of  the  model  trained  using
DP with the noise multiplier values. For that purpose, we run
it with both IID and non-IID data partitions, and the reported
results  are  averaged  among  10  executions.  It  is  shown,  as
expected, that the higher the noise introduced in the communi-
cation  to  increase  privacy,  the  poorer  the  performance.
According to this experiment, a value of 0.1 for the Gaussian
noise  multiplier  still  maintains  predictive  performance  in
terms of accuracy at the same level, in the IID and the non-IID
scenario,  while  strengthening  the  local  privacy.  By  further
increasing the noise, performance degrades, but it may recover
by increasing the number of learning rounds. Consequentially,
increasing  the  noise  multiplier  above  this  threshold  would
depend  on  the  problem  requirements  and  the  privacy  con-
cerns  of  the  users  involved  in  the  scenario.  Futhermore,  it
should be noted that the runtime remains constant, disregard-
ing  the  level  of  induced  noise.  Finally,  although  in  UC1 and
UC2 Flower  appeared  to  be  the  better  option,  several  factors
must  be  considered  when  choosing  a  framework.  If  privacy
protection in the communications is a design factor to be pri-
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oritized and DP is hence necessary, to date TFF provides this
functionality and can be a suitable option.  

E.  UC5: Clustering With K-Means in HFL
In  addition  to  training  predictive  supervised  models,  unsu-

pervised  techniques  can  be  adapted  to  FL  according  to  the
workflow presented:

1)  Problem  Type  and  Federated  Distribution: In  this  use
case  we  face  an  HFL  problem,  where  the  MNIST  dataset  is

IID  partitioned.  TFF  is  used,  since  it  is  the  only  one  of  the
three FL frameworks providing models for clustering tasks in
FL scenarios.

2)  Model  Selection: As  for  the  learning  model,  TFF offers
an implementation of k-means; since such a model cannot be
expressed as an array of parameters, a specific aggregator had
to be designed in the TFF implementation to adapt the method
to the federated environment.

3)  Aggregation  Strategy: At  each  round,  TFF’s  k-means
aggregator  receives  the  centroids  that  each  client  computed
locally, as well as the number of data points assigned to each
centroid.  Subsequently,  the  server  computes  the  new  cen-
troids  as  a  weighted  combination  of  the  client’s  centroids,
where weights are related to the number of data points repre-
sented by every client centroid.

4) Training and Evaluation Strategy: In this case, to evalu-
ate the clustering model, no testing data is used, but different
unsupervised internal measures are computed to assess its per-
formance,  such  as  the  analysis  of  the  centroids.  To  the  date,
the  considered  frameworks  do  not  offer  many  options  for
evaluating federated clustering models.

28×28

The data loading and partitioning is performed as in Listing
2.  The  model  is  created  as  in Listing 21,  where  the  training
strategy  is  also  set  up,  considering  as  main  parameters  the
number of clusters and the shape of the input data. The input
data shape is set to 784 (input images of  pixels), while
the number of clusters is set to the number of different digits
in the dataset. After defining the model, the federated process
is initialized and run for several rounds.

It  should  be  highlighted  that,  while  offering  the  k-means
method,  the options to  further  manipulate  it  beyond its  train-
ing phase are very limited. Among these options, we can show
the number of instances assigned to each cluster or the coordi-
nates of the clusters’ centroids (Listing 22).

Besides  printing  the  centroids,  they  can  also  be  plotted.  In
Fig. 9 the centroids of a classic centralized k-means are com-
pared to the federated version participating 10 clients; in both
cases,  the  algorithm ran  for  10  iterations.  It  can  be  observed
that  the  outcomes are  similar  in  both  cases:  most  of  the  cen-
troids represent a clear digit, while there are others where it is
not  clear  which  digit  are  representing;  such  centroids  com-
prise instances from different classes.  
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Fig. 7.     Host’s view of a decision tree built by SecureBoost for UC3.
 

 

 
Listing 20.     UC4:  introducing  DP  in  TFF.  Training  process  including  DP
mechanisms.
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Fig. 8.     Test results of UC4 as DP noise increases.
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F.  UC6: Clustering With K-Means in VFL
Clustering  methods  might  be  applied  to  vertically  parti-

tioned scenarios too. Following the workflow in Fig. 6:
1)  Problem  Type  and  Federated  Distribution: In  UC6  we

face  a  VFL  scenario  over  the  Credit2  dataset,  which  is  not
inherently  federated  distributed.  Therefore,  a  non-IID  parti-
tion is simulated.

2) Model Selection: Once each client holds its specific data,
FATE’s implementation of k-means is used.

3) Aggregation Strategy: As in the previous use case, a spe-
cific aggregator for k-means models is used.

4)  Training  and  Evaluation  Strategy: Similar  to  UC5,  the
evaluation  is  performed  by  using  internal  clustering  metrics,
such  as  the  compactness  of  the  clusters  and  the  distance
between  them;  therefore,  the  evaluation  is  carried  out  on  the
same data on which the clustering process was conducted.

The process to perform clustering in a VFL scenario is simi-
lar to the training presented in UC3 (see Section VII-C). The
main differences are the definition of the k-means model and
its training strategy, as presented in Listing 23. The number of
clusters  is  set  to  the  number  of  classes  in  the  dataset,  and  a
maximum of 100 iterations are performed.
 

 
Listing 23.     UC6: clustering with k-means in TFF. Printing some results.
 

In order to demonstrate the proper operation of k-means in a
federated  scenario,  the  Davies-Bouldin  Index  (DBI) [83] is
analysed,  and  a  minimized  clustering  metric  evaluates  the
compactness  of  each  cluster  as  well  as  the  distance  to  the
remaining clusters. Fig. 10 plots  the DBI of  both the central-
ized  k-means  execution  using  all  the  attributes  in  one  party,
and  the  VFL  k-means  using  two  different  parties.  Note  that
the  k-means  automatically  stops  execution  if  convergence  is
observed  or  the  clusters  do  not  change  for  many  iterations.
The  results  indicate  that  DBI  in  both  cases  reaches  the  same
minimum  value,  however  the  centralized  version  requires
fewer  iterations.  Therefore,  it  is  demonstrated  that  equally
competitive  results  can  be  obtained  even  if  data  access  is
restricted.
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Fig. 10.     Convergence comparison between centralized and VFL k-means in
UC6.  

G.  Lessons Learned From a Practical Perspective
Based on the extensive study of the use cases and the analy-

sis of datasets and software frameworks, the following lessons
have been learned, which can be quite useful for practitioners:

● The precision of FL is competitive when compared to the
performance of centralized scenarios, highlighting the non-IID
scenario  which is  the  most  common case  in  real-world  prob-
lems.  Therefore,  FL  can  be  deemed  an  excellent  option  for
distributed data silos, not only to preserve privacy, but also for
good performance.

●  FL  can  be  applied  to  different  state-of-the-art  models,
including deep neural networks (deep learning), unsupervised
learning  (e.g.,  clustering)  or  interpretable  models  (such  as
decision trees), among other ML approaches. We can find dis-
tributed implementations of FL for almost all ML approaches.

● DP can be added to a FL scenario to ensure data privacy
without increasing running times, at the cost of a performance

 

 
Listing 21.     UC5:  clustering  with  k-means  in  HFL  in  TFF.  Defining  k-
means model.
 

 

 
Listing 22.     UC5:  clustering  with  k-means  in  HFL  in  TFF.  Printing  some
results.
 

 

c0 c1 c2 c3 c4

c5 c6 c7 c8 c9

(a) Centroids in centralized k-means

c0 c1 c2 c3 c4

c5 c6 c7 c8 c9

(b) Centroids in federated k-means with 10 clients
 
Fig. 9.     Comparison of k-means centroids using either the centralized or the
federated version in UC5.
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penalty. This has been observed in Fig. 8 (showing the degra-
dation of performance).

● There are several software frameworks for implementing
FL scenarios. However, hardly any of them include function-
alities beyond the basics. Thus, there is still room for research
before software frameworks with a larger range of models and
functionalities become available.

● Among those tools analysed in depth in the experimental
use  cases,  it  has  been  clearly  demonstrated  that,  although
FATE offers some mechanisms to solve problems in HFL sce-
narios,  it  offers  far  fewer  options  than  the  rest  of  the  frame-
works  and  yields  significantly  worse  performance.  However,
its applicability to VFL scenarios has been proven to be excel-
lent.  In  contrast,  when  facing  HFL  problems,  the  choice
between TFF and Flower may depend on several factors, such
as i) the users’ experience in TensorFlow and PyTorch; ii) the
need  for  introducing  data  privacy  in  the  process,  where  TFF
includes DP mechanisms, but Flower does not; iii) the perfor-
mance of the models,  where Flower models seems to outper-
form those provided by TFF; or iv) by any other of the charac-
teristics that distinguish them, noted in Table II.  

VIII.  Selected Trends in Federated Learning Studies
and Machine Learning Approaches

FL has the potential to transform the way we approach ML,
making  it  more  efficient,  secure,  and  privacy-preserving.  In
this  section,  we  will  explore  some  trends  in  FL,  including
those  that  arise  naturally  from  its  design  and  those  that  are
carried over from the ML challenges. Such selected trends in
FL  studies  are  graphically  summarized  in Fig. 11 and  dis-
cussed in the rest of the section.
 

Attacks & defenses in
federated learning

Section
Ⅶ-A

Personalized
federated
learning

Section
Ⅶ-B

Section
Ⅶ-C

Section
Ⅶ-D
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New ML tasks
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NLP &
sentiment
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Selected
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learning

 
Fig. 11.     Selected trends in FL discussed in this manuscript.  

A.  Attacks and Defences in Federated Learning
As with  any ML paradigm,  FL is  vulnerable  to  adversarial

attacks [27].  The vast majority of the attacks in ML are built
upon  the  manipulation  of  training  data  by  third-parties [84].
FL, by definition, is exempt from such attacks as training data
is inaccessible. However, it is exposed to numerous adversar-
ial  attacks,  either  from  clients  or  the  server,  as  well  as  from
third parties in communications.

There is a wide range of possibilities when it comes to cate-

gorizing attacks according to different criteria such as the ori-
gin  of  the  attack,  the  attacker’s  knowledge,  the  objective  of
the  attack,  and so forth [85], [86].  The main attack types  are
attacks to the model, with the aim of modifying the behaviour
of the federated model, and privacy attacks, which attempt to
infer  some  information  about  the  training  data  allocated
among  the  clients,  namely:  Property  Inference  Attacks [87],
Feature  Reconstruction  Attacks [88] and  Membership  Infer-
ence Attacks [89].

Defensive  strategies  have  been  developed  to  address  these
types of  attacks [90]–[92].  The nature of  these defences,  like
that of the attacks, is diverse, and categorizations can be found
based on various classification criteria. According to the place
where  the  defence  is  allocated,  we  distinguish  between:  1)
Server  defenses,  which assume that  the  server  is  reliable  and
are  usually  based  on  robust  aggregation  operators,  anomaly
detection or  the  application of  DP;  2)  Client  defenses,  which
assume that at  least  a portion of the clients is  benign and are
commonly based on the application of DP; and 3) Communi-
cation  channel  defenses,  which  embrace  secure  implementa-
tions of FL as SMC (see Section III-D1).  

B.  Personalized Federated Learning
FL introduces  several  advantages  regarding  the  centralized

ML such as generalization, privacy, and reduction of the com-
munications.  However,  this  solution  does  not  address  two
desirable features of a model such as producing poor conver-
gence on highly imbalanced data, and the customization of the
models  to  the  different  clients’ specifications.  On  one  hand,
the  convergence  of  FL  models  degrades  significantly  when
data  imbalance  is  present.  This  performance  degradation  is
attributed to the so-called client drift phenomenon [93]. Since
the global model is averaged from multiple clients, it may not
generalize well in a client whose data distribution has outliers.
Thus, having a single model is often insufficient for practical
applications  of  FL having  imbalanced  datasets  from multiple
clients. Personalized federated learning (PFL) [94] arises as a
solution  to  both  challenges  without  losing  sight  of  the
attributes provided by FL.

There are several proposals to achieve PFL. In [95] the fol-
lowing categorization of strategies for PFL is proposed:

● Global  Model  Personalization: The  performance  of  PFL
is directly dependent on the generalization performance of the
global model, which is the reason why many PFL approaches
aim  to  improve  the  performance  of  the  global  model  under
data  imbalance.  Within  this  category,  a  distinction  is  made
between data-based approaches, based on mitigating the client
drift  problem by reducing the statistical  heterogeneity among
the  clients’ training  data,  and  between  model-based  appro-
aches,  based  on  learning  a  global  model  robust  enough  for
future  customization  on  clients.  Data-based  approaches
directly address the data imbalance present in FL at the client
level [96],  or  select  a  subset  of  clients  with  minimal  class
imbalance [97].  In  contrast  to  data-based  approaches,  which
incur a loss of valuable information associated with the inher-
ent  diversity  of  client  behaviors,  model-based approaches  try
to improve the adaptation performance of the local  model by
means of regularization techniques [98].
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● Learning  Personalized  Models: It  is  designed  to  address
the  customization  problem  applying  different  learning  para-
digms in the FL setting [43]. Within this category, we distin-
guish between architecture-based approaches, which provide a
personalized model architecture to each client, and similarity-
based approaches, which aim to take advantage of client rela-
tionships to improve performance. Architecture-based approa-
ches focus on training shared layers between clients and some
personalized layers locally at every client [99]. Another archi-
tecture-based approach is to train different architectures using
a public  dataset  based on the updated consensus,  and then to
fine-tune each local model using the private dataset [100].  In
similarity-based  approaches,  a  personalized  model  is  learned
for  each  client,  with  related  clients  learning  similar  models
through multitask learning to consider pairwise client relation-
ships [101].  

C.  Federated Transfer Learning
When  local  datasets  do  not  share  sufficient  common  fea-

tures or samples, FL may struggle. This is where FTL comes
into play. Several researchers have applied FTL in real-world
applications.

A  secure  FTL  framework  is  formulated  in [28],  as  a  tech-
nique  that  integrates  transfer  learning  into  FL  to  construct  a
model  from  two  datasets  with  different  samples  and  feature
spaces. This approach enables the transfer of knowledge from
a pretrained model on a source dataset to a target dataset that
has different feature spaces or data distributions. The FedSteg
framework [102] uses  FTL  to  detect  hidden  information  in
images  for  secure  image  steganalysis.  Reference [103] uti-
lized  FTL without  sharing  vocabulary  for  privacy-preserving
NLP  applications  in  cancer  registries.  Reference [104] uti-
lized  knowledge  distillation  to  train  computationally  afford-
able CNNs for edge devices. The authors proposed the Group
Knowledge  Transfer  framework,  which  optimizes  the  client
and  server  model  alternatively  with  knowledge  distillation
loss.  The larger server model takes features from the edge to
minimize  the  gap  between  periodically  transferred  ground
truth  and  soft  label  predicted  by  the  edge  model,  while  the
small  model  distils  knowledge  from  the  larger  server  model
using  private  data  and  soft  labels  transferred  back  from  the
server.

To summarize, FTL is a promising trend that combines the
strengths  of  transfer  learning  and  FL,  suitable  for  real-world
applications with privacy concerns or limited data availability.  

D.  Machine Learning Tasks With Federated Learning
ML  techniques  have  revolutionized  the  way  we  approach

data analysis and decision-making. In this section, we explore
their  extension  to  FL  and  how  they  can  improve  its  perfor-
mance.

a)  Semi-Supervised  Federated  Learning: This  builds  upon
the idea of effectively using unlabelled data to enhance train-
ing.  The  usage  of  unlabelled  data  is  also  motivated  by  FL
itself, as it imposes strong privacy requirements, which makes
large-scale  labelling  unfeasible.  However,  there  are  also  sce-
narios  where  labeling  costs  are  significantly  reduced  due  to
being  mostly  automated.  A  remarkable  example  is  language

modelling,  where  labelling  is  achieved  through  user  typing
behavior [14].

Popular semi-supervised learning techniques based on Con-
sistency Regularization [105] and Pseudo-labelling [106] can
be  naively  applied  to  FL.  However,  further  adaptation  is
required  to  notably  increase  the  performance  of  such  tech-
niques. Similar adaptations have been developed in parallel by
some  authors,  showing  great  success  in  the  process [107].
Additional  approaches  based  on  knowledge  distillation  tech-
niques have also been proposed [108].

While  the  performance  gap  between  supervised  FL  and
semi-supervised FL has been notably narrowed [109], there is
still room for improvement, since the field of semi-supervised
FL  has  received  little  attention  in  the  literature.  The  FL
ecosystem can greatly benefit from the latest advances in this
field, as the sources of unlabelled data are constantly growing.

b)  Federated  Learning  for  Anomaly  Detection: Anomaly
detection is the task of identifying unusual data points or pat-
terns that do not conform to the expected or normal behaviour
and  may  indicate  unusual  events  that  may  require  further
investigation [110]. The relationship between FL and anomaly
detection  becomes  essential  mainly  when  dealing  with  IoT
environments.  However,  IoT  devices  have  been  increasing
their  computing  power  recently,  to  the  point  that  they  can
deploy ML models by themselves.  Therefore,  to preserve the
privacy  of  sensor  data  and  to  reduce  communication  over-
heads,  many  of  these  anomaly  detection  methods  have  been
adapted to federated scenarios.

The work on Intrusion Detection Systems, whose aim is to
detect attempts to compromise the integrity, confidentiality, or
availability  of  networks,  is  extensive  in  federated  scenarios
[111].  FL  has  also  been  used  in  financial  problems [112],
which  is  a  very  common  field  in  anomaly  detection.  In  this
case,  it  is  essential  to  preserve  data  privacy  to  the  maximum
extent  possible  since  different  private  organizations  could  be
cooperating  to  detect  financial  frauds  while  using  sensitive
data. Another major research field that benefits from the com-
bination  of  FL  and  anomaly  detection  is  Predictive  Mainte-
nance [113].  In  many  industrial  settings,  the  machinery  is
monitored and sensorized so that, it allows the construction of
models to detect  anomalous behaviour that  may be related to
an early or future breakdown of such machinery.

Not  only  have anomaly detection methods  been adapted to
FL  environments,  but  also  some  anomaly  detection  mecha-
nisms have been incorporated in certain cases to improve the
security  of  existing  FL  algorithms.  The  main  use  case  has
been  the  detection  and  defence  from  poisoning  attacks,  by
detecting  clients  that  may  be  operating  anomalously  regard-
ing the rest of the participants, thus discarding their updates or
completely  removing  them  from  the  training  process. [114],
[115].  

E.  Natural Language Processing and Sentiment Analysis in Fed-
erated Learning

NLP and SA are two critical fields in ML that have numer-
ous applications in areas such as customer service, marketing,
and social  media  analysis [116].  In  the  FL context,  NLP and
SA are  used to  analyse  natural  language text  data  distributed
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across multiple devices or servers without the need for data to
be centralized [117]. This approach allows for the creation of
robust models without the need to share sensitive data, thereby
addressing privacy concerns.  However,  the  distributed nature
of FL presents several challenges for NLP and SA. For exam-
ple,  due to variations in the data across different devices,  the
model must be able to learn from data with different distribu-
tions and handle noisy data. Furthermore, data imbalance and
heterogeneity  across  different  devices  pose  additional  chal-
lenges for NLP and SA [118].

Despite  these  challenges,  NLP  and  SA have  been  success-
fully  implemented in  FL [8].  One approach is  to  use transfer
learning techniques to pretrain the model on large, centralized
datasets  before  fine-tuning  it  on  the  distributed  data.  This
approach has been shown in Section VII-B to be effective in
improving  model  performance  on  distributed  data,  where
clients use a pretrained model to solely train the last layers of
the  model,  converging  faster  than  training  the  whole  model
from  scratch.  Another  approach  is  to  use  DP  techniques  to
protect  the  privacy  of  individual  data  points  during  training.
Another  nascent  approach  is  to  apply  contrastive  representa-
tion learning to handle crowds [119], in which FL can help to
deal with numerous individuals to contribute to data labelling
and annotation tasks, which is a bottleneck in NLP. However,
these  techniques  can  lead  to  decreased  model  accuracy,  and
more research is needed to address this issue.

In  summary,  NLP  and  SA  are  critical  fields  that  have
numerous applications in ML, and their implementation in FL
offers  a  promising  solution  for  privacy-preserving  ML.
Despite the challenges posed by the distributed nature of FL,
successful implementations have been achieved through trans-
fer learning and DP techniques. Ongoing research is needed to
address  the  remaining  challenges  and  to  further  advance  the
field of NLP and SA in FL.  

IX.  Conclusions

As has been shown in this tutorial, FL has become a crucial
field  for  training  machine  learning  models  across  decentral-
ized  environments.  In  situations  when  data  privacy  is  a  hard
requirement, FL allows ML models to be trained locally while
leveraging  the  knowledge  gathered  from  other  nodes  of  the
decentralized  network  without  any  need  for  centralized  data
transfer.  This  reduces  the  vulnerability  of  sensitive  data  and
mitigates the risk of interception by third parties.

The instructive view on FL provided in this tutorial encom-
passes FL foundations from key elements to architectures and
categories,  a  design  methodology,  eighteen  software  frame-
works,  six  exemplary  use  cases,  and  selected  trends.  This
material  can be useful  for  developers  and researchers  willing
to  gain  a  comprehensive  understanding  of  this  field.  More-
over, the use cases covering different possible real-world sce-
narios  have  been  thoroughly  described,  and  we  have  dis-
cussed  how  to  solve  them  with  three  different  frameworks
(TFF, Flower and FATE). This implementation guide aims to
support practitioners when designing and building reliable and
secure  ML models  that  respect  data  privacy and that  provide
accurate  and  useful  results  for  a  wide  range  of  distributed
computing applications and environments.

On an overarching note, FL has grown in maturity over the
years, due to the large number of studies and different frame-
works  proposed  to  solve  FL  problems.  However,  there  is  a
widespread  consensus  around  the  promising  path  that  lies
ahead  for  this  research  area.  New  challenges  and  opportuni-
ties  will  surely  arise  for  future  research,  which  are  regularly
discussed in prospective surveys on the topic [120]–[126].

Beyond  the  realm  of  research,  recent  data  privacy  regula-
tions (including the Data Governance Act [127] and the Artifi-
cial Intelligence Act [128] of the European Parliament, among
others) have emphasized the significance of privacy as one of
the fundamental requirements for trustworthy and responsible
AI.  In  this  regard,  FL  can  be  identified  as  a  pivotal  technol-
ogy to ensure that sensitive data remains confidential in high-
risk scenarios throughout the entire AI life cycle. This regula-
tory  context  elevates  FL  as  a  field  of  utmost  relevance  for
realizing  trustworthy  and  responsible  AI [129],  highlighting
the  need  for  reference  material  as  the  tutorial  contributed  in
this  manuscript.  Trends  in  responsible  AI,  stressing  privacy-
preserving techniques and security enhancements,  are closely
aligned with the need for safeguarding sensitive user data and
ensuring  the  ethical  treatment  of  individuals’ information.
These  needs  lie  at  the  heart  of  FL.  As  FL  becomes  increas-
ingly integrated into practical problems arising from different
sectors,  aligning  its  development  with  responsible  AI  guide-
lines  not  only  fosters  trust  and  societal  acceptance  on  this
decentralized  machine  learning  approach,  but  also  reinforces
its responsible and sustainable growth in the future.  

Appendix
Abbreviations, Notations and Framework URLs

In  this  Appendix,  we include the  list  of  abbreviations  used
throughout the manuscript, as follows:

UC1 Use Case 1
UC2 Use Case 2
UC3 Use Case 3
UC4 Use Case 4
UC5 Use Case 5
UC6 Use Case 6
AI Artificial Intelligence
FedAvg Federated Averaging
FL Federated Learning
IoT Internet of Things
IoHT Internet Of Healthcare Things
IID Independent and Identically Distributed
ML Machine Learning
non-IID Non Independent and Identically Distributed
HFL Horizontal Federated Learning
VFL Vertical Federated Learning
FTL Federated Transfer Learning
SMC Secure Multiparty Computation
HE Homomorphic Encryption
DP Differential Privacy
LDP Local Differential Privacy
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CDP Central Differential Privacy
TFF TensorFlow Federated
PyS PySyft
FAT FATE
Pad PaddleFL
Flo Flower
Xay Xaynet
IBM IBM FL
Sub Substra
OFL OpenFL
FML FedML
FJx FedJax
101 Backdoors 101
FLb FedLab
SFL SimFL
EFL easyFL
TFL TorchFL
AFL APPFL
NVF NVFlare
CNN Convolutional Neural Networks
RNN Recurrent Neural Networks
NLP Natural Language Processing
DBI Davies-Bouldin Index
PFL Personalized Federated Learning
SA Sentiment Analysis

We also provide a table of the notation employed in formal
definitions in Table VIII.
 

TABLE VIII 

Notation Employed in Formal Definitions

Term Definition
{C1, ..., Cn} Set of data owners (also known as clients).

Di Training data of client Ci.

Li Local learning model (expressed as parameters) of client Ci.

G Global learning model.

t Round of learning.

Lt
i

Parameters of local model Li at the t-th round before training.

L̂t
i

Parameters of local model Li at the t-th round after training.

Gt Parameters of the global learning model at the t-th round.

X Feature space.

Y Label space.

I ID space.
 
 

Furthermore,  we  state  that  each  software  framework
reviewed were accessed using the following URLs as of Octo-
ber 3rd, 2023:

●  TensorFlow  Federated  https://github.com/tensorflow/fed-
erated

● PySyft https://github.com/OpenMined/PySyft
● FATE https://github.com/FederatedAI/FATE
● PaddleFL https://github.com/PaddlePaddle/PaddleFL

● Flower https://github.com/adap/flower
● Xaynet https://github.com/xaynetwork/xaynet
● IBM FL https://github.com/IBM/federated-learning-lib
● Substra https://github.com/Substra/substra
● OpenFL https://github.com/intel/openfl
● FedML https://github.com/FedML-AI/FedML
● FedJax https://github.com/google/fedjax
● Backdoors 101 https://github.com/ebagdasa/backdoors101
● FedLab https://github.com/SMILELab-FL/FedLab
● SimFL https://github.com/Xtra-Computing/SimFL
● easyFL https://github.com/EasyFL-AI/EasyFL
● TorchFL https://github.com/vivekkhimani/torchfl
● APPFL https://github.com/APPFL/APPFL
● NVFlare https://github.com/NVIDIA/NVFlare
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