BDBAnalytics LogoBDBAnalytics LogoBDBAnalytics LogoBDBAnalytics Logo
  • خدمات
  • Home
  • مجله
  • About us
  • تماس با ما
  • دکتر سعید روحانی
  • Login Customizer
  • [email protected]

مقاله: Issues and Challenges of Aspect-basedSentiment Analysis: A Comprehensive Survey

منتشر شده توسط صبا بزرگی در آوریل 27, 2023

❇️نام مقاله:
 Issues and Challenges of Aspect-based
Sentiment Analysis: A Comprehensive Survey

🖋نویسندگان: 
Ambreen Nazir , Yuan Rao, Lianwei Wu , and Ling Sun

📔منتشر شده در : 
IEEE Transactions on Affective Computing

دانلود مقالهدانلود

🔸این مقاله به حوزه تحلیل احساسات (SA) که به عنوان عقیده کاوی نیز نامیده می‌شود، بعنوان یک حوزه تحقیقاتی فعال برای نمایش احساسات و کشف خودکار احساسات بیان شده در متن می‌پردازد. هدف SA معمولاً محصول یا خدماتی است که در بین مردم مورد توجه است و افراد به بروز احساسات نسبت به آن اهمیت می­‌دهند. به طور سنتی، SA به عنوان یک قطبیت عقیده در نظر گرفته می‌شود که آیا شخصی در مورد یک رویداد احساسات مثبت، منفی یا خنثی ابراز کرده است.

🔸تحلیل احساسات  به طور کلی در سه سطح طبقه‌بندی شده است. سطح سند، سطح جمله و سطح جنبه به این معنا که آیا یک سند کامل، یک جمله (ذهنی یا عینی) و یک جنبه بیانگر یک احساس است، یعنی مثبت، منفی یا خنثی.

🔸حوزه تحلیل احساسات مبتنی بر جنبه(AbSA)، که در آن جنبه‌ها استخراج می‌شوند، احساسات مربوط به آن‌ها تحلیل می‌شوند و احساسات در طول زمان تکامل می‌یابند، با افزایش بازخورد عمومی و حضور مشتریان در رسانه‌های اجتماعی، بسیار مورد توجه قرار گرفته است. پیشرفت‌های عظیم در این زمینه، محققان را بر آن داشت تا تکنیک‌ها و رویکردهای جدیدی را ابداع کنند، که هر کدام متمرکز بر یک تحلیل/پرسش پژوهشی متفاوت بوده و با مسائل آتی و سناریوهای پیچیده تحلیل احساسات مبتنی بر جنبه کار می‌کند.
 
 🔸حوزه AbSA را می­‌توان بر اساس سه مرحله پردازش اصلی طبقه‌بندی کرد: استخراج جنبه (AE)، تجزیه و تحلیل احساسات جنبه (ASA) و تکامل احساسات (SE). فاز اول به استخراج جنبه‌ها می‌پردازد که می‌تواند جنبه‌های صریح، جنبه‌های ضمنی، اصطلاحات جنبه، موجودیت‌ها و هدف عبارات نظر (OTE) باشد. مرحله دوم قطبیت احساسات را برای یک جنبه، هدف یا موجودیت از پیش تعریف شده طبقه بندی می­‌کند. این مرحله همچنین تعاملات، وابستگی­‌ها و روابط معنایی زمینه­‌ای را بین اشیاء داده­‌ای مختلف، به عنوان مثال، جنبه، موجودیت، هدف، هدف چند کلمه­‌ای، کلمه احساس، برای دستیابی به دقت طبقه‌بندی احساسات، فرموله می­‌کند. مرحله سوم به پویایی احساسات افراد نسبت به جنبه­‌ها (رویدادها) در یک دوره زمانی مربوط می­‌شود. ویژگی­‌های اجتماعی و تجربه شخصی به عنوان علل اصلی SE در نظر گرفته می­‌شود.

🔸از سویی نویسندگان مقاله تاکید دارند که تمرکز پژوهش­‌های موجود به جزئیات فنی یا مراحل خاص AbSA محدود می­‌شود و در آنها مسائل مهم و چالش­‌های کلیدی AE، ASA، SE به طور دقیق بیان و خلاصه نشده است. همچنین به دلیل دستاوردها و نوآوری­‌های نمایی در سال­‌های اخیر، نتایج آن پژوهش‌ها در معرض منسوخ شدن قرار گرفته­‌اند. لذا برای پر کردن این شکاف، نویسندگان مقاله یک بررسی جامع مرتبط با AbSA را پیشنهاد می‌کنند.

 🔸در همین راستا این پژوهش بر مطالعه مسائل و چالش‌های مرتبط با استخراج جنبه‌های مختلف و احساسات مربوط به آن‌ها، نگاشت رابطه‌ای بین جنبه‌ها، تعاملات، وابستگی‌ها و روابط معنایی زمینه‌ای بین اشیاء داده‌ا­ی مختلف برای بهبود دقت احساسات و پیش‌بینی پویایی تحول احساسات تمرکز دارد.

🔸در نهایت یک مرور کلی دقیق از پیشرفت­‌های اخیر در این حوزه خواهد داشت بر اساس اینکه سهم هریک در برجسته کردن و کاهش موضوعات مربوط به استخراج جنبه، تحلیل احساسات جنبه یا تکامل احساسات چه بوده است. عملکرد گزارش شده برای هر مطالعه موشکافانه استخراج جنبه و تحلیل احساسات جنبه نیز ارائه شده است که ارزیابی کمی رویکرد پیشنهادی را نشان می‌دهد.  در انتها رویکردهای تحقیقاتی آتی با تحلیل انتقادی راه‌حل‌های اخیر ارائه شده پیشنهاد و مورد بحث قرار می‌گیرند که برای محققین مفید و برای بهبود طبقه‌بندی احساسات در سطح جنبه کارآمد خواهد بود.

اشتراک
صبا بزرگی
صبا بزرگی

مطالب مرتبط

فوریه 19, 2025

معرفی مقاله “Leveraging Large Language Model ChatGPT for enhanced understanding of end-user emotions in social media feedbacks”


اطلاعات بیشتر
دسامبر 25, 2024

فصلنامه پاییز 1403


اطلاعات بیشتر
نوامبر 28, 2024

معرفی مقاله “Text analytics and new service development: a hybrid thematic analysis with systematic literature review approach”


اطلاعات بیشتر
نوامبر 6, 2024

معرفی مقاله Comprehensive analytics of COVID-19 vaccine research: From topic modeling to topic classification


اطلاعات بیشتر

تماس با ما


بپیوندید

لینک‌های مفید


  • دانشگاه تهران

    • پایگاه TDWI

درباره ما


BDBAnalytics یک تیم آکادمیک تخصصی در تجزیه و تحلیل عظیم داده برای کسب‌وکارها است. این تیم متشکل از اساتید و دانشجویان، در زمینه عظیم داده‌ بسیار موفق عمل کرده و ارائه‌دهنده بینش‌ها و راه‌حل‌های ارزشمندی است. بر اساس تخصص خود، BDBAnalytics به عنوان انتخاب برتر سازمان‌هایی است که به دنبال استراتژی‌های مبتنی بر داده و رویکردهای نوآورانه برای چالش‌های کسب‌وکاری خود هستند.

Copyright © 2024 | BDBAnalytics
  • [email protected]