معرفی کتاب “Big Data Recommender Systems Volume 1: Algorithms, Architectures, Big Data, Security and Trust”

📌سیستم‌های توصیه‌گر عظیم‌داده: الگوریتم‌ها، معماری‌ها، عظیم‌داده، امنیت و اعتماد

“Big Data Recommender Systems Volume 1: Algorithms, Architectures, Big Data, Security and Trust”

📌نویسندگان:
Osman Khalid, Samee U. Khan and Albert Y. Zomaya

📌این کتاب در سال 2019 توسط The Institution of Engineering and Technology انتشار یافته است.

📍 کتاب سیستم‌های توصیه‌گر عظیم‌داده، یک مجموعه جامع دو جلدی است که به چالش‌ها و فرصت‌های بزرگی که با رشد سریع عظیم‌داده و افزایش وابستگی به سیستم‌های توصیه‌گر در بخش‌های مختلف به وجود آمده‌اند، می‌پردازد. با گسترش شبکه‌های اجتماعی، تجارت الکترونیک، موتورهای جستجو و شبکه‌های حسگر، سیستم‌های توصیه‌گر به یکی از تکنولوژی‌های اصلی برای ارائه محتوای شخصی‌سازی شده، فیلتر کردن حجم وسیعی از داده‌ها و بهبود تجربه کاربری تبدیل شده‌اند. این کتاب با تکیه بر پیشرفت‌های اخیر در الگوریتم‌ها، تحلیل داده، محاسبات با کارایی بالا و اینترنت اشیا (IoT)، به بررسی جامع هر دو جنبه بنیان‌های نظری و کاربردهای عملی سیستم‌های توصیه‌گر می‌پردازد.

📍جلد ۱: الگوریتم‌ها، معماری‌ها، امنیت و اعتماد
جلد اول بر چارچوب‌های نظری، الگوریتم‌ها و معماری‌ها تمرکز دارد که برای ساخت سیستم‌های توصیه‌گر کارا و مقیاس‌پذیر در زمینه عظیم‌داده ضروری هستند. این جلد موضوعات پایه‌ای متنوعی از جمله ارزیابی الگوریتم‌های توصیه‌گر با استفاده از ابزارهایی مانند Hadoop و Apache Spark و همچنین روش‌های ترکیبی که چندین تکنیک را برای بهبود کیفیت توصیه‌ها ترکیب می‌کنند را پوشش می‌دهد. تکنیک‌های مبتنی بر یادگیری عمیق به طور ویژه‌ای مورد توجه قرار گرفته‌اند، که نشان از اهمیت روزافزون آن‌ها در توسعه سیستم‌های توصیه‌گر دارد. فصل‌های این جلد همچنین به توصیه‌گری برای عظیم‌داده‌های غیرساخت‌یافته، از جمله روش‌هایی برای مدیریت داده‌های متنی، صوتی و تصویری می‌پردازند.
امنیت و حریم خصوصی در دنیای عظیم‌داده بسیار حیاتی هستند و جلد ۱ چندین فصل را به این موضوعات اختصاص داده است. در این بخش، استراتژی‌های نوین برای تشخیص و کاهش حملات سایبری به سیستم‌های توصیه‌گر، محافظت در برابر آسیب‌پذیری‌ها و حفظ حریم خصوصی داده‌های کاربران بررسی می‌شوند. این جلد طیف وسیعی از تکنیک‌های حفظ حریم خصوصی و روش‌های دفاعی را معرفی می‌کند که آن را به مرجعی ضروری برای محققان و حرفه‌ای‌هایی که به دنبال ساخت سیستم‌های توصیه‌گر ایمن و پایدار هستند تبدیل می‌کند.

📍جلد ۲: پارادایم‌های کاربردی
جلد ۲ به دامنه‌های کاربردی سیستم‌های توصیه‌گر می‌پردازد و دیدگاه عملیاتی درباره چگونگی پیاده‌سازی این سیستم‌ها در صنایع و حوزه‌های مختلف ارائه می‌دهد. فصل‌های این جلد به کاربردهای متنوعی همچون مدل‌های توصیه‌گر سلامت‌محور، توصیه‌گرهای ویدئویی، پیشنهاد مسیرهای سفر و توصیه‌گرهای مبتنی بر مکان‌های مورد علاقه می‌پردازد. علاوه بر این، جلد دوم بر استفاده از شبکه‌های عصبی عمیق و پردازش موازی با تکنولوژی‌هایی همچون Hadoop و Spark تمرکز دارد که مقیاس‌پذیری و کارایی الگوریتم‌های توصیه‌گر را بهبود بخشیده‌اند. این تکنولوژی‌ها به ویژه برای پردازش مجموعه داده‌های بزرگ که در کاربردهای واقعی معمول هستند، بسیار مهم‌اند. همچنین به توصیه‌های حساس به حالت روحی، پردازش جریانی و مدل‌های توصیه‌گر شبکه هوشمند اشاره شده است که نشان می‌دهد سیستم‌های توصیه‌گر چقدر در حل مسائل پیچیده در زمینه‌های مختلف تطبیق‌پذیر و چندمنظوره هستند.

📍مخاطبان و کاربران
این مجموعه دو جلدی با همکاری محققان برجسته و متخصصان حوزه به نگارش درآمده است و آن را به منبعی ارزشمند برای مخاطبان گسترده‌ای تبدیل کرده است. این کتاب برای پژوهشگران، متخصصان و دانشجویان تحصیلات تکمیلی در رشته‌هایی مانند مهندسی، علوم کامپیوتر، داده‌کاوی، مهندسی دانش و سیستم‌های اطلاعاتی طراحی شده است. فصل‌های کتاب شامل تحلیل‌های عمیق، مطالعات موردی و راه‌حل‌های عملی هستند که کتاب را نه تنها برای مقاصد علمی بلکه برای حرفه‌ای‌های صنعت که در مرزهای دانش عظیم‌داده و تکنولوژی‌های توصیه‌گر فعالیت می‌کنند، به‌کاربردی تبدیل می‌کند. با پرداختن به هر دو جنبه نظری و عملی، این کتاب به عنوان یک مرجع ضروری برای درک تکامل این سیستم‌ها در دنیای داده‌محور امروز عمل می‌کند. این کتاب نگاهی جامع و به‌روز از روندهای نوظهور، نیازهای صنعت و جهت‌گیری‌های آینده تحقیقاتی ارائه می‌دهد و برای هر کسی که در توسعه یا مطالعه سیستم‌های توصیه‌گر در دوران عظیم‌داده دخیل است، ضروری خواهد بود.

اسکرول به بالا